

REPORT

Hydrogeological Development Suitability Study

Greater Bragg Creek Area Structure Plan Review

Submitted to:

Rocky View County

262075 Rocky View Point Rocky View County, AB, T4A 0X2

Submitted by:

WSP Canada Inc.

3300 237 4th Avenue SW Calgary, AB T2P 4K3

CA0048988.7843 Client Ref: PO 32354 September 25, 2025

Distribution List

1 e-copy: Rocky View County

1 e-copy: WSP Canada Inc.

FINAL

September 25, 2025 Reference No. PO 32354

Dalia Wang, Planner

Rocky View County 262075 Rocky View Point Rocky View County, AB T4A 0X0

Dear Dalia:

As per the request by Rocky View County, we have prepared this report of the Hydrogeological Suitability Study for the Bragg Creek Development and Expansion Areas. We hope it meets your needs and expectations and those of your team.

We appreciate the opportunity to work on such an interesting and important project, and look forward to potential collaboration in the future.

Yours sincerely,

WSP Canada Inc.

David Parsons, M.Sc., P.Geol.

Lead Hydrogeologist

DP/jr/ef

WSP ref: CA0048988.7843

Table of Contents

1	INTRO	DUCTION	1							
2	ВАСКО	GROUND AND OBJECTIVES	1							
3	HYDROGEOLOGICAL STUDY									
	3.1	Groundwater Resource Evaluation and Aquifer Assessment	2							
	3.1.1	Area Geology	2							
	3.1.1.1	Bedrock Geology	2							
	3.1.1.2	Surficial Geology	2							
	3.1.2	Water Wells and Groundwater Licences in Project Area	3							
	3.1.3	Potential Aquifers in Study Area	3							
	3.1.3.1	Surficial Aquifers	3							
	3.1.3.2	Bedrock Aquifers	4							
	3.1.3.3	Groundwater Recharge	5							
	3.1.4	Water Quality	5							
	3.2	Site Suitability for Development	6							
	3.2.1	Fine and Coarse Textured Alluvial Deposits	7							
	3.2.2	Fine Textured Glaciolacustrine/Till Deposits	7							
	3.2.3	Sandy Till (Moraine) Deposits and Colluvium	8							
	3.3	Seepage Assessment and Risks Due to Flooding	8							
	3.3.1	Results	9							
4	CONCL	USIONS	10							
5	DATA (GAPS AND RECOMMENDATIONS FOR FURTHER EFFORTS	10							
6	CLOSU	IRE	11							
7	REFER	ENCES	13							

TABLES (after text)

Table 1: Well Records - Domestic

Table 2: Well Records - Miscellaneous

Table 3: Water Licences

Table 4: Estimated Extent of Elbow River Flood Impacts (1:100 year event)

FIGURES (after text)

Figure 1: Project Location

Figure 2: Bedrock and Surficial Geology

Figure 3: Airphoto Borehole Plan

Figure 4: Cross-Section A-A'

Figure 5: Cross-Section B-B'

Figure 6: Cross-Section C-C'

Figure 7: Groundwater Wells - Recommended Rates

Figure 8: Piper Plot – Shallow and Bedrock Aquifers

Figure 9: Groundwater Seepage Assessment - 1:100 Year Flood

APPENDICES

APPENDIX A

Water Well Reports

APPENDIX B

Groundwater Chemistry

APPENDIX C

Analytical Calculations

1 INTRODUCTION

WSP Canada was retained by Rocky View County (the County) to complete a Hydrogeological Development Suitability Study, which will contribute to informing the development of an updated Area Structure Plan (ASP) for the Greater Bragg Creek area. The existing ASP lays a foundation that addresses community values, environmental integrity, and sustainable growth. However, with evolving environmental, infrastructure, and population dynamics, there is a need for an updated ASP. This study will underpin the new ASP by assessing hydrogeological and geotechnical factors that directly influence development suitability across the plan area. The hydrogeological assessment consists of multidisciplinary fields to determine areas suitability for development and identifying areas where additional precautions or restrictions are necessary due to environmental sensitivity or geological challenges. The study focused on:

- Flood and Groundwater Management assessing flood risks, drainage patterns, and groundwater levels to develop effective flood mitigation strategies and protect water resources.
- Geotechnical Suitability evaluating soil conditions, stability, and potential geohazards to ensure safe and cost-effective construction and foundation design.
- Environmental Preservation identifying key natural resources and implementing strategies to minimize ecological impact, preserve habitats, and comply with environmental regulations.
- Potable Water and Wastewater Infrastructure Feasibility analyzing the capacity of existing water supply and wastewater systems to meet demand and evaluating options for sustainable infrastructure development.

2 BACKGROUND AND OBJECTIVES

The primary objective of this study is to deliver a detailed assessment of hydrogeological conditions within the Bragg Creek Hamlet Growth Area and Expansion Area (the Study Area), the boundaries of which are illustrated on Figure 1. This involved determining areas suitable for development and identifying areas where additional precautions or restrictions are necessary due to potential environmental sensitivity or geological challenges, based on desktop assessment. The overall scope of work encompassed the following key components:

- Data Collection and Review Compilation of previous hydrogeological, geotechnical, and environmental studies, including the assessment of relevant records from the Bragg Creek Hamlet Expansion Strategy and other publicly available resources on the County's website.
- Hydrogeological Analysis Surface and groundwater conditions within the Study Area were assessed, taking into account the extent and yield capabilities of aquifers, groundwater flow regimes, and recharge and discharge areas, particularly in relation to seasonal variations in water levels and flood risk. Historical data and analytical methods were used to visualize and evaluate existing conditions and potential impacts on areas identified for future development.
- Geotechnical Evaluation WSP identified areas where subsurface geological materials could limit development potential due to risks such as slope instability or subsidence. The analysis incorporated data such as subsurface composition, groundwater conditions, and topography to pinpoint areas requiring specialized construction techniques or those deemed unsuitable for development.
- Impact Assessment and Mitigation Strategies The preliminary assessment evaluated potential impacts of the proposed development on water resources, infrastructure, and the environment. Mitigation measures were recommended for sensitive areas, aligned with the ASP's environmental goals and informed by Rocky View County's low-impact development principles and Alberta's Water for Life Strategy.

3 HYDROGEOLOGICAL STUDY

3.1 Groundwater Resource Evaluation and Aquifer Assessment

3.1.1 Area Geology

The bedrock geology and surficial deposits within the Study Area are shown on Figure 2.

3.1.1.1 Bedrock Geology

The bedrock geology in the Study Area is a complex series of repeated units formed by northwest-southeast trending thrust faults and folds of the Foreland Fold and Thrust Belt (Rocky Mountain Thrust Belt). Bedrock formations broadly sub-crop parallel to the regional deformation structures. The bedrock units in this area are Upper and Lower Cretaceous in age. The Upper Cretaceous units are identified as the Wapiabi Formation and Cardium Formation, and the Lower Cretaceous unit consists of the Blairmore Group (Figure 1).

The geological formations are described by Prior et al. as follows:

Upper Cretaceous

- Wapiabi Formation shale, mudstone, silty shale, argillaceous siltstone, and siltstone (some platy, some with rusty-brown weathering, some calcareous); local bentonite layers and local siderite concretions (isolated or along horizons, locally abundant); includes fine-grained, massive to cross-bedded sandstone of the Marshybank Member (lower part of formation) and the fine- to coarse-grained sandstone and argillaceous siltstone of the Chungo Member (upper part of formation); rare, thin chert-pebble layers; marine to locally nonmarine deposits.
- Cardium Formation Quartz sandstone (commonly thick bedded to massive), silty sandstone, siltstone, shale, and pebble conglomerate; marine deposits.

Lower Cretaceous

 Blairmore Group – Conglomerate and quartzose sandstones at the base, grades to sandstone, siltstone, mudstone, and limestone in the overlying formations.

3.1.1.2 Surficial Geology

The surficial geology of the Bragg Creek area consists primarily of Pleistocene-aged glacial deposits, with moraine, fluvial, and glaciolacustrine deposits being the dominant units (Figure 2). Fluvial deposits, including a mix of poorly to well-sorted, stratified to massive sand, gravel, silt, clay, and organic sediments are found beneath areas of low surface elevations adjacent to the Elbow River. In some areas, fluvial deposits incorporate a significant amount of colluvial material. Glacial moraine deposits consist of diamicton (till) deposited directly by glacial ice, which includes a mixture of clay, silt, and sand, along with minor pebbles, cobbles, and boulders (AGS 2024). These deposits include blocks of bedrock, stratified sediments, or lenses of glaciolacustrine and/or glaciofluvial material in some locations (AGS 2024). Lastly, the glaciolacustrine deposits, include sediments that are rhythmically laminated to massive fine sand, silt, and clay, sometimes containing debris released by melting floating ice. Littoral sediments are typically massive to stratified, well-sorted silty sand, pebbly sand, and minor gravel, commonly found in beaches, bars, and deltas (AGS 2024)

3.1.2 Water Wells and Groundwater Licences in Project Area

A total of 179 records were identified within the Study Area through a review of the Alberta Water Well Information Database (AWWID, Appendix A). Table 1 presents a summary of Domestic use wells, and Table 2 summarizes Observation, Municipal, and Unknown use wells.

It should be noted that the total number of records does not directly correspond to the number of active water wells, as the dataset includes entries related to water quality sampling, decommissioned wells, reconditioned or deepened wells, and test holes. Additionally, some active wells may not be captured due to incomplete reporting at the time of drilling. After filtering out records unlikely to represent active wells, the estimated number of active wells within the Project Area is approximately 70 to 80. Furthermore, the mapped well locations should be considered approximate, as many records provide location data only to the legal subdivision or quarter section level.

There is one active groundwater diversion licence, as shown in Table 3. The licence serves various purposes and allocates an annual groundwater volume of 1,230 m³/year to the Bavarian Inn. It is assumed that the rest of the water wells in the Study Area are operated under exemptions to the *Water Act* for household use or traditional agricultural use of groundwater. These types of exemptions limit diversions to 1,250 m³/year and 6,250 m³/year, respectively.

Numerous springs have been identified in the surrounding areas by Borneuf (1980) and others. Only one spring is recorded in the water well database for the Study Area, in the NW quarter of Section 12. The precise location of this spring is unknown based on the available information; however, it is likely that it occurs as a contact spring at the base of a slope, either in the vicinity of Park Place/Park Pointe, or on the north side of the Elbow River, south of Centre Avenue.

3.1.3 Potential Aquifers in Study Area

Groundwater in the Study Area is primarily stored in shallow alluvial aquifers adjacent to the Elbow River. These aquifers exhibit seasonal variations in groundwater flow direction, which are closely tied to river discharge levels. During periods of low river discharge, groundwater tends to flow sub-parallel to the river, while during high discharge periods, the flow direction can shift, indicating complex interactions between surface water and groundwater systems.

Sandstone units within the Upper and Lower Cretaceous deposits are the primary bedrock aquifers in the Study area. Deformation of bedrock units resulted in sub horizontal and near-vertical orientation of depositional units as well as truncations of aquifer units by faulting can limit the lateral continuity and therefore yield capacity of these aquifers. Drilling reports from AWWID indicate that bedrock units with a well-developed fracture network (typically near the top of bedrock) may also act as secondary bedrock aquifers.

The locations of water wells, historical boreholes and hydrogeological cross-section lines are shown on Figure 3. Hydrogeological cross-sections A-A' (Figure 4), B-B' (Figure 5), and C-C' (Figure 6), show the distributions of geological materials, well screen intervals, and water levels in selected boreholes and water well records in the Study Area.

3.1.3.1 Surficial Aquifers

Surficial aquifers are typically within shallow fluvial and glaciofluvial units composed of sands and gravels; these aquifers are expected to have limited lateral and vertical extents in the Study Area due to the topography and nature of the depositional environment. Surficial deposits and associated aquifers generally occur at depths of less than 17 metres below ground level (mGL). Thirty-seven AWWID records have been interpreted as being completed in the surficial aquifers. Sand and gravel deposits of varying depths were noted above bedrock across the Study Area. Recommended or tested flow rates from 25 wells completed within surficial aquifers ranged from 1.1 to 114 L/min, with an average of approximately 34 L/min.

Mapped groundwater yields in surficial aquifers in the Study Area range between 5 and 25 imperial gallons per minute (igpm), or 30 to 160 m³/d (Borneuf 1980, HCL 2002). The Bow River basin, of which the Elbow River is a tributary, is closed to new surface water allocations. This includes groundwater that is considered directly connected to surface water, so groundwater diversions from alluvial aquifers in the Bragg Creek townsite are limited to existing allocations and may be subject to holdbacks.

In the Hamlet Expansion Area, extensive surficial sand and gravel-bearing deposits of up to 40 m depth covered by a thin veneer of fine-grained materials are indicated in the water well records and may represent buried paleochannel or glacial meltwater lake deposits within sandy tills that are/were connected to channels that drain southeast to Priddis Creek (Figure 2). A gravel pit is located to the west of the Study Area in NE Section 07, and SE Section 18 of Twp 23 Rng 4 W5M and appears to also represent similar deposits connected to the Priddis Creek sub-watershed (Figure 2). Limited water level measurements from the water wells completed in these deposits are available; however, the data that is available indicate a deep local water table and deep saturated intervals of limited thickness within these granular deposits immediately above the bedrock. The AWWID records indicate the wells in the Hamlet Expansion Area are mostly screened in the underlying bedrock sandstones.

3.1.3.2 Bedrock Aquifers

Sandstone units within the Blairmore and the Alberta Group deposits are expected to be the primary bedrock aquifers in the Study Area; however, drilling reports from AWWID indicate that fine-grained bedrock units with a well-developed fracture network may also act as secondary aquifers. Due to the complex regional folding and faulting of the bedrock in the Study Area, the low permeability units are expected to act as confining layers and barriers to groundwater flow. Hydraulic connectivity between sandstone units will be controlled by the extent of fracture development within the low permeability units. Mapped groundwater yields from the Study Area (Borneuf 1980, HCL 2002) are between 1 igpm and 5 igpm (0.1 to 0.4 L/s, 5 to 30 m³/d) in the bedrock aquifers. Data from the AWWID records indicates the following about wells completed within the bedrock:

- Water well depths ranged from 18 to 90 m, with an average depth of 35 m; the majority of the wells are installed to withdraw groundwater from interbedded shale and sandstone bedrock units.
- Water well pumping rates were assessed in records from 1966 2022; recommended pumping rates (as indicated in the records by the water well drillers) range from 1.14 to 90.92 L/min, with an average rate of 18.95 L/min. The approximate locations of these groundwater wells and their recommended pumping rates are shown on Figure 7. Water well records are included in Appendix A and Tables 1 and 2.
- Across the Study Area, there are multiple sets of records that show a combination of test holes, dry holes, or new wells have been drilled near one another and terminated at various depths; indicating that the depth to viable aquifers is inconsistent across the Study Area. A comparison of drilled well depths and recommended pumping rate data further indicated that there is no apparent correlation between well depth and recommended pumping rates.

3.1.3.3 Groundwater Recharge

Of the 179 well records in the Bragg Creek Hamlet Growth and Expansion Areas, approximately 143 have data to indicate the depth of screened, open, or perforated intervals, in addition to lithology logs. Disregarding decommissioned wells, it is estimated there are on the order of 70 to 80 active water wells in the Study Area. Other than the single licensed water well for the Bavarian Inn, it is assumed that the active water wells in the Study Area are operated under exemptions to the *Water Act* for household use or traditional agricultural use of groundwater. These types of exemptions limit diversions to 1,250 m³/year and 6,250 m³/year, respectively. If a volume of 1250 m³/year is being diverted from 80 of these wells, that represents an annual groundwater requirement of approximately 100,000 m³/year. This estimated volume only includes water wells within the boundaries of the Study Area; however, it is unlikely that all of these wells are fully active and being used constantly throughout the year. It is also possible that many are not being used at all or have been abandoned.

The catchment area for Bragg Creek (waterbody), Iron Creek, and areas of the Study Area and adjacent areas that drain to the Elbow River represent approximately 60 km². Average annual precipitation in Bragg Creek is approximately 410 mm/year, and therefore equates to a volume of almost 24,000,000 m³/year in the catchment area. An assumption of 10% groundwater recharge equals over 2,400,000 m³/year, which well exceeds the estimated groundwater usage for the Study Area. This proportion of groundwater recharge (10%) was previously assumed for the Jumpingpound Creek watershed to the north and was comparable to separate estimates of recharge obtained from baseflow separations for that area (AMEC, 2011). This estimate also does not include potential recharge occurring further upstream of the Study Area boundaries within the Elbow River catchment.

3.1.4 Water Quality

The Greater Bragg Creek Area was evaluated for water quality using laboratory results administered by Alberta Health Services (AHS) for private well water (Appendix B). Groundwater samples were collected from private wells between 2002 and 2018, with the wells categorized by depth into surficial and bedrock aquifers. What are classified as surficial aquifer wells in the Study Area generally include those with depths ranging from 0.0 to 17 mGL, while wells deeper than 17 mGL are likely installed in a bedrock aquifer and extend to depths up to 54 m. The water quality results included various groundwater parameters, including major ions and general chemistry analytes, trace metals, and bacteria.

The average pH for the surficial aquifer was 8.09, while the bedrock aquifer had a similar but slightly higher average pH of 8.23. Total Dissolved Solids (TDS) concentrations averaged 490 mg/L for the surficial aquifer and 436 mg/L for the bedrock aquifer. Electrical conductivity (EC) averaged 877 μ S/cm for the surficial aquifer and 786 μ S/cm for the bedrock aquifer. Chloride concentrations were 60.0 mg/L in the surficial aquifer and 39.5 mg/L in the bedrock aquifer, both of which are within typical ranges, although slightly elevated compared to background values.

The water type in the surficial aquifer is primarily Calcium Bicarbonate, with minor contributions from Calcium Chloride, Sodium Bicarbonate, Calcium Sulphate, and Sodium Chloride waters. The bedrock aquifer, in contrast, contains a more even mix of Calcium Bicarbonate and Sodium Bicarbonate water type, with lower relative concentrations of other major ions. Figure 8 presents a Piper plot illustrating the geochemical composition of the groundwater samples, categorized by their respective sources.

Overall, the water quality in the Study Area can be considered suitable for domestic consumption, agriculture, and other development-related uses; however, there are concerns regarding groundwater hardness, which may impact well screens, plumbing fixtures and other infrastructure, and may be of concern to individuals with health issues related to bones and joints.

The Sodium Absorption Ratio (SAR) of local groundwater was assessed using the equation below

$$ext{SAR} = rac{Na^+}{\sqrt{rac{1}{2}(Ca^{2+} + Mg^{2+})}}$$

Analyte concentrations were obtained from Alberta Health Services and converted from mg/L to meq/L. The Sodium Adsorption Ratio (SAR) for the surficial aquifer was calculated at 1.11 meq/L, and for bedrock aquifer, at 1.89 meq/L. These values reflect the relative proportion of sodium to calcium and magnesium in both shallow and groundwater sources. SAR values of this magnitude are considered low, indicating minimal risk of sodium-related impacts on subsurface soils and ground structures. SAR greater than 8 may be conducive to reduced permeability of surface soils over time which would impact the function of disposal fields or stormwater infiltration features (AENV, 1996).

To evaluate the potential for scaling and corrosion in water systems that divert and convey local groundwater, the Langelier Saturation Index (LSI) and Ryznar Stability Index (RSI) were calculated. The LSI estimates whether water will precipitate or dissolve calcium carbonate: a positive LSI indicates a tendency for scaling, while a negative value points to potential corrosion. The RSI is derived from water chemistry parameters including pH, calcium, TDS, bicarbonate, and temperature; assumed temperatures were 15°C for the surficial aquifer and 10°C for the bedrock aquifer.

The calculated RSI for the surficial aquifer was 6.4, suggesting the water is stable with low likelihood for corrosion. Similarly, the bedrock aquifer showed an RSI of 6.8, indicating only a slight difference from the surficial aquifer and similarly low risk. The LSI for the surficial aquifer was calculated at 0.83, while the bedrock aquifer had an LSI of 0.73. These positive values indicate that both water sources are supersaturated with respect to calcium carbonate, suggesting a moderate tendency to form scale buildup on surfaces such as piping, fixtures, and well casings/screens.

3.2 Site Suitability for Development

Site Suitability for Development is generally determined by the composition and drainage capacity of the natural surficial materials and soils, severity of surface slopes, and depths to water table and bedrock. As discussed above, surficial geological materials that characterize the Study Area include:

- Fine- and coarse-grained alluvial sands and gravels, occurring in the valley bottoms and in adjacent areas as terraces.
- Thin, fine-textured glaciolacustrine deposits on top of bedrock (Bayrock et. al. 1980). Scheelar and Veauvy (1977) interpret these materials to be morainal blanket deposits of glacial origin. These generally occur on the higher ground to the south of the Elbow River (including most of the Hamlet Expansion Area).
- At elevated areas to the north and southwest of the Elbow River, surface materials are mainly comprised of sandy till (Moraine) deposits on top of bedrock, and colluvium consisting of soil and rock creep materials occurs at the highest elevations. The occurrence of these deposits is very limited within the Study Area.

Figure 2 shows the general distribution of the surficial materials described above. The following subsections discuss the suitability for development in the areas where each of them occurs.

3.2.1 Fine and Coarse Textured Alluvial Deposits

The alluvial deposits in the region occur in and along the river channels and in adjacent terraces and are typically 2 to 7 m thick (Bayrock et al. 1980). Drilling data in the Study Area indicate typical thicknesses of alluvial sands and gravels of between 2 m and 5 m. Floodplain-deposited silty sands at ground level and overlying the coarser fluvial channel material are also commonly found at the low elevations adjacent to the river in the valley bottom. The areas where these occur are characterized by:

- Shallow water table due to low elevation and proximity to the Elbow River.
- High permeability, which gives them a high infiltration/drainage capacity and low risk for frost heave, however, these materials also are conducive to seepage induced by flooding. Drainage is also limited by shallow water tables and shallow bedrock in the area.
- The gravel deposits in these areas can be a source of aggregate, where practical (Shetsen 1981).
- The fine and coarse alluvial and floodplain deposits may be suitable as road fill.
- They generally occur on level- to gently sloping topography on the valley bottom and terraces near the base of adjacent slopes.

Due to the risks from shallow water tables and seepage/flooding risks, these areas are not generally recommended for homes with basement levels, on-site septic systems, or passive stormwater or low impact development (LID) facilities. These areas may be more suitable for recreation areas, limited agriculture, and non-residential buildings and roadways. Buildings/residential developments could be considered for higher elevation areas further from the river and/or using added fill on top of grade, slab on grade or raised foundations, or flood protection structures where practical. Excavations in these noncohesive granular materials can be prone to sloughing/caving as well (Scheelar and Veauvy, 1977).

To the south of the river valley and floodplain, in the Hamlet Expansion Area (SE ¼, Section 12), there are surficial granular deposits of possible fluvial/glaciofluvial or lacustrine origin extending to depths of up to 40m. These deposits appear to represent an abandoned/buried paleochannel or meltwater lake deposits potentially connected to tributary streams flowing to the southeast toward Priddis Creek. Aerial imagery shows that there is a gravel pit located to the east of the Hamlet Expansion Area, in an area of local sand and gravel deposits mapped by Shetsen (1981), which also appears to be connected to Priddis Creek drainage. Water tables in this area appear to be much deeper below ground level, and the areas where the granular surficial materials occur are likely well-drained. Topography is gently to moderately sloping and some areas may require cut/fill grading to permit residential development in some locations.

3.2.2 Fine Textured Glaciolacustrine/Till Deposits

The silty, relatively thin surficial materials deposited above bedrock at the higher elevations to the south and north of the valley bottom range from 3 to 6 m thick (Bayrock et. al 1980). They generally consist of clayey silt with minor sand and gravel. The high elevation areas where these deposits occur are characterized by:

- High fines content and low permeability may be below ideal infiltration capacity for stormwater, infiltration, and septic facilities in some areas; Scheelar and Veauvy (1977) describe the deposits as moderately well-draining.
- They generally occur on gently to moderately sloping topography.

■ The local bedrock depth is variable and the water table is relatively deep, but perched conditions may exist in some areas.

The silty composition of the deposits may make these materials prone to frost heave.

Slopes, moderate drainage and susceptibility to frost heave represent some risk for buildings, roadways, stormwater or septic facilities, and landfills in certain areas. For recreation sites and agriculture, the areas where these surficial deposits occur are generally suitable. Cut/fill/levelling would be required in some cases for expanded residential development. Excavations may be limited by shallow bedrock at higher elevations. Perched water tables may occur in some locations creating wet conditions and possible need to manage seepage during and after construction.

3.2.3 Sandy Till (Moraine) Deposits and Colluvium

Sandy till and colluvium deposits occur along the steeper slopes to the north and southwest of the Elbow River and are of limited extent and occurrence within the Study Area boundaries. These are characterized as sandy till/morainal veneer deposits consisting of approximately 50% sand. Colluvium occurs at the highest elevations with a 1.5 to 3 m thickness consisting of rock creep and weathered bedrock material directly above shale, siltstone, and sandstone bedrock. These deposits:

- Are generally well-drained and of relatively high permeability.
- Occur on moderate to steep slopes.
- Occur where bedrock is shallow. The water table where these deposits occur is generally deep, but perched conditions may exist.

The steep slopes and thin deposits above bedrock generally make these areas unsuitable for development, however, some developments may be sited where slopes are moderate. They may be suitable for limited use for recreation sites and agriculture. The occurrence of the surficial deposits that characterize these areas are of limited areal extent in the Hamlet Growth Area and are more common in areas further north and southwest of the Study Area boundaries.

3.3 Seepage Assessment and Risks Due to Flooding

Groundwater seepage was previously assessed by Amec Foster Wheeler (2017) to estimate potential underseepage beneath proposed flood berms along the Elbow River, to evaluate the necessary capacity of proposed drainage systems, and to determine the likelihood and extent of groundwater seepage appearing at surface in a 1:100-year flood event. Historical borehole and test pit data have been compiled to characterize the subsurface and the alluvial aquifer in the area of the Elbow R-river channel and flood plain to re-assess the extent of flooding due groundwater seepage beneath the flood berms. The previous assessment was based on the information available at the time from the immediate area and some simplifying assumptions. Here, underseepage during flood conditions will be reassessed using additional, more up-to-date information and revised assumptions.

It is understood that there have been instances of greater incursion of groundwater in some areas adjacent to the Elbow River than expected at times during the annual water cycle. This is believed to be partly due to the presence of the berm which has effectively narrowed and deepened the river channel in some areas, possibly resulting in higher local rise in the river level than expected during peak flows in spring. In addition, the permeable sand and gravel deposits are conducive to rapid seepage of flood water through the surficial deposits and under the berm that can reappear at ground surface.

Groundwater seepage rates and water table displacement were evaluated based on the hydraulic head changes produced by the expected rise and rate of change in the river level in a 1:100-year flood condition using river and flood stationing data from Amec Foster Wheeler (2017). The seepage estimates are determined based on one-dimensional flow in an unconfined aquifer developed by Edelman (1947), as described by Huisman and Olsthoorn (1983).

The calculations used for seepage estimates are as follows:

```
u = 0.5*\sqrt{(S_y/Kb)*(x/\sqrt{t})}  (1a)

s_x = s_o * erfc(u)  (1b)

q_o = (s_o/\sqrt{(\pi)}) * (\sqrt{(Sy*K*b)})*(1/\sqrt{(t)})  (1c)

E_2 = e^{-uu}  (1d)

q_x = q_o * E_2  (1e)
```

Where:

```
\begin{split} S_y &= \text{specific yield} \\ K &= \text{hydraulic conductivity (m/s)} \\ b &= \text{aquifer thickness (m)}, \\ x &= \text{distance from flood-berm interface (m)} \\ t &= \text{time (d)} \\ s_o &= \text{river level rise (3.6 to 4.4 m) and } s_x = \text{head change at distance x from the interface (L)} \\ q_o &= \text{seepage rate at the interface, and } q_x = \text{seepage rate at distance x (L}^3/t) \end{split}
```

Some assumptions were made to simplify the analytical calculations:

- The transition to the flood condition is instantaneous and the peak flood persists for up to 3 days.
- The surficial geology consists of a single layer of material, as described above, with a typical thickness observed in borehole logs of 4.0 m.
- Hydraulic conductivity (K) estimates for the sand/gravel surficial materials in the immediate area range from 5.0 x 10⁻⁵ to 8.5 x 10⁻⁴ m/s, based on particle size and slug test data collected during previous investigations.
- Distances (x) at which water table rise and seepage rates are calculated are relative to the flood/berm interface which is considered to be located at the stream-side toe of the berm.
- All seepage flux is assumed to be horizontal and parallel to the plane of section (orthogonal to the river channel).

The calculations produced multiple estimates of seepage flux and water table displacement for 2D sections through the river and floodplain area at the selected stationing locations. The calculations were automated using a spreadsheet. The results were calculated at various time steps, which are within the range that peak flooding would be expected to persist (approximately three days). Sensitivity of the calculations to uncertainty in parameters such as hydraulic conductivity and flood duration were assessed as well.

3.3.1 Results

Table 4 and Figure 9 present the estimated extent of daylighting of groundwater underseepage during flood conditions and extent of potential impacts to subsurface structures such as basements. The assessment neglects the potential barrier effects of materials such as road pavements or preferential pathways created by underground utilities. It also disregards collection and potential infiltration of direct surface precipitation and runoff.

The theoretical seepage calculations and results are included in Appendix C. The analysis indicates that impacts due to induced groundwater seepage in a 1:100year flood event may propagate between 50 to 100m laterally from the river channel and berm within a typical flood advance timeframe of 2 to 3 days.

Seepage fluxes in the subsurface at a distance of 50m from the river/berm interface (as calculated from equations 1c to 1e and summarized in Appendix C) are mostly between 8 and 9 m³/d per lateral metre orthogonal to the direction of flow. Groundwater seepage reaching subsurface structures would represent a significant portion of these fluxes, depending on the depth/elevation of the structure relative to the water table rise and the configuration of the structure.

4 CONCLUSIONS

Bedrock aquifers composed of alternating shale and sandstone represent the primary source of domestic groundwater use in the area. Groundwater yield mapping and recharge estimates indicate that sufficient groundwater resources capable of providing provincially mandated domestic water volumes appear to exist across the Study Area; however, due to the complex regional folding and faulting of the bedrock geology, the depth and continuity of water bearing units may vary widely and productivity of water bearing units also is expected to vary.

Groundwater quality in bedrock aquifers in the Study Area is of generally acceptable quality and within guidelines for domestic consumption. Sodium Absorption Ratios in surficial and bedrock aquifers were within a range suggesting they were suitable for stormwater infiltration facilities and septic fields; however, other site suitability factors would also need to be favourable. It was also determined that groundwater hardness and carbonate stability indices indicate that scaling of plumbing and fixtures is a potential problem for new developments, and water hardness may also be of concern for individuals with health issues related to bones and joints.

Site suitability for new developments is variable across the Hamlet Growth and Expansion Areas, and all areas have some combination of shallow water tables, shallow bedrock depths, steep slopes, poorly draining surface soils, and risks of groundwater flooding that may be detrimental to development activities without cut and fill levelling, raised / pile-supported foundations or other interventions. The most desirable areas for residential developments are likely in the lowland valley area at distances of greater than 100m from the Elbow River, and in parts of the Hamlet Expansion Area (SE ¼ Section 12) where soils are well-draining and slopes are relatively moderate.

An updated assessment of the extent of flooding impacts due to induced groundwater seepage during a 1:100 year flood condition indicate that, provided the flood berms are effective at preventing overland flooding, possible daylighting of groundwater and basement seepage would be limited to a distance of between 50 and 100 m inland from the Elbow River flood berm in most areas, assuming direct precipitation and runoff contributions are relatively minor.

5 DATA GAPS AND RECOMMENDATIONS FOR FURTHER EFFORTS

The most significant data gaps are associated with the subsurface characterization of the Hamlet Expansion Area in SE-12-23-05 W5M. A field verified water well survey to confirm the existence and location of water wells and springs in that area should be conducted to provide additional detail to future hydrostratigraphic conceptual models. Also, a limited drilling programme and/or geophysical survey may be necessary to delineate/confirm the local stratigraphy, and areal distribution and thickness of fine- and coarse-grained surficial materials.

A number of geotechnical and groundwater monitoring boreholes and instrumentation have been installed in the past in the Hamlet of Bragg Creek, generally focussed on small areas including a gauging station site, and the water treatment plant. Data associated with these investigations was collected in various years and times of the year. It is recommended to conduct a field programme to fill gaps in these existing data sets by completing the following:

- Borehole drilling to further characterize the geology in the Hamlet Expansion Area.
- Conducting surface geophysical surveys where feasible, to supplement the drilling programme.
- Water level monitoring and in-situ testing for assessment of hydraulic parameters, including slug tests and / or pumping tests.

Assessment of the extent of flooding impacts may be refined by developing a 2D or 3D numerical surface water-groundwater model(s) for the area. Such models, in comparison to the analytical calculations described above, may better incorporate and account for the complexities of area geology, as well as timing of both flood advance and recession, and inputs from precipitation and runoff.

Installation and testing of water wells in proposed areas of development can be conducted to assess the feasibility of community or individual household water wells in new residential developments, the capabilities of local aquifers, and potential impacts on existing groundwater users in adjacent areas.

6 CLOSURE

This report has been prepared for the exclusive use of Rocky View County. Any use which a third party makes of this report, or any reliance on, or decisions made based on it, are the responsibility of such third parties. WSP accepts no responsibility for damages suffered by a third party as a result of decisions made or actions taken based on this report. No other warranty, expressed or implied, is made.

Signature Page

WSP Canada Inc.

Prepared by:

David Parsons, M.Sc., P.Geol. Lead Hydrogeologist

Reviewed by:

Alyssa Barker, P.Geo. *Group Manager / Lead Hydrogeologist*

Contributors:

Nishat Rahman, B.Sc., G.I.T. Hydrogeologist in Training

DP/NR/AB/jr/ef

7 REFERENCES

AENV (Alberta Environment). 1996. Environmental Reference Manual for the Review of Subdivisions in Alberta. Standards and Guidelines Branch, November 1996.

- AEP (Alberta Environment and Parks). 2025. Alberta Water Well Information System Database. Available online: http://groundwater.alberta.ca/WaterWells/.
- Alberta Geological Survey. 2024. Sediments and landforms: Moraine, fluvial and glaciolacustrine deposits in Alberta. Alberta Energy Regulator/AGS.
- AMEC (AMEC Earth and Environmental). 2011. Technical Memorandum No. 1: Water Supply and Demand Management Assessment: Groundwater Component. Jumpingpound Creek Watershed Partnership, Cochrane, AB. 19 pp.
- AMEC. 2017. Bragg Creek Flood Mitigation Design Report. Submitted to Rocky View County, June 2017.
- Borneuf. D. 1980. Hydrogeology of the Kananaskis Lake Area. Alberta Research Council. Earth Sciences. Report 79-4.
- Huisman, L. and T.N. Olsthoorn. 1983. Artificial Groundwater Recharge. Pittman: London. 320pp.
- Lenntech. 2024a. Langelier Saturation Index Calculator. https://www.lenntech.com/calculators/langelier/index/langelier.htm.
- Lenntech. 2024b. Ryznar Stability Index Calculator https://www.lenntech.com/calculators/ryznar/index/ryznar.htm.
- Ollerenshaw, N.C. 1978. Geology, Calgary West of Fifth Meridian, Alberta–British Columbia. Geological Survey of Canada, Map 1457A.
- Ozoray, G.F., & Barnes, R.G. 1978. Hydrogeology of the Calgary–Golden area, Alberta. Alberta Research Council, ARC/AGS Earth Sciences Report 1977-02, 40 p.
- Prior, G.J., Hathway, B., Glombick, P.M., Pana, D.I., Banks, C.J., Hay, D.C., Schneider, C.L., Grobe, M., Elgr, R., & Weiss, J.A. 2013. Bedrock geology of Alberta. Alberta Energy Regulator, AER/AGS Map 600.
- Rutherford, G. 1927. Geology along the Bow River between Cochrane and Kananaskis, Alberta. Research Council of Alberta, RCA/AHS Report 17, 64 p.
- Scheelar, M.D. and C.F. Veauvy. 1977. Detailed Soil Survey of Bragg Creek Area. Alberta Research Council Open File Report 1977-2. 73 pp. incl. map.

Limitations of This Report

WSP Canada Inc ("WSP") prepared this report solely for the use of the intended recipient, Rocky View County, in accordance with the professional services agreement between the parties.

The report is intended to be used in its entirety. No excerpts may be taken to be representative of the findings in the assessment. The conclusions presented in this report are based on work performed by trained, professional and technical staff, in accordance with their reasonable interpretation of current and accepted engineering and scientific practices at the time the work was performed.

The content and opinions contained in the present report are based on the observations and/or information available to WSP at the time of preparation, using investigation techniques and engineering analysis methods consistent with those ordinarily exercised by WSP and other engineering/scientific practitioners working under similar conditions, and subject to the same time, financial and physical constraints applicable to this project.

WSP disclaims any obligation to update this report if, after the date of this report, any conditions appear to differ significantly from those presented in this report; however, WSP reserves the right to amend or supplement this report based on additional information, documentation, or evidence.

WSP makes no other representations whatsoever concerning the legal significance of its findings.

The intended recipient is solely responsible for the disclosure of any information contained in this report. If a third party makes use of, relies on, or makes decisions in accordance with this report, said third party is solely responsible for such use, reliance or decisions. WSP does not accept responsibility for damages, if any, suffered by any third party as a result of decisions made or actions taken by said third party based on this report.¹

WSP has provided services to the intended recipient in accordance with the professional services agreement between the parties and in a manner consistent with that degree of care, skill and diligence normally provided by members of the same profession performing the same or comparable services in respect of projects of a similar nature in similar circumstances. It is understood and agreed by WSP and the recipient of this report that WSP provides no warranty, express or implied, of any kind. Without limiting the generality of the foregoing, it is agreed and understood by WSP and the recipient of this report that WSP makes no representation or warranty whatsoever as to the sufficiency of its scope of work for the purpose sought by the recipient of this report.

In preparing this report, WSP has relied in good faith on information provided by others, as noted in the report. WSP has reasonably assumed that the information provided is correct and WSP is not responsible for the accuracy or completeness of such information. Benchmark and elevations used in this report are primarily to establish relative elevation differences between the specific testing and/or sampling locations and should not be used for other purposes, such as grading, excavating, construction, planning, development, etc.

Approval of this document is an administrative function indicating readiness for release and does not impart legal liability on to the Approver for any technical content contained herein. Technical accuracy and fit-for-purpose of this content is obtained through the review process. The Approver shall ensure the applicable review process has occurred prior to signing the document.

Design recommendations given in this report are applicable only to the project and areas as described in the text and then only if constructed in accordance with the details stated in this report. The comments made in this report on potential construction issues and possible methods are intended only for the guidance of the designer. The number of testing and/or sampling locations may not be sufficient to determine all the factors that may affect construction methods and costs. We accept no responsibility for any decisions made or actions taken as a result of this report unless we are specifically advised of and participate in such action, in which case our responsibility will be as agreed to at that time.

Overall conditions can only be extrapolated to an undefined limited area around these testing and sampling locations. The conditions that WSP interprets to exist between testing and sampling points may differ from those that actually exist. The accuracy of any extrapolation and interpretation beyond the sampling locations will depend on natural conditions, the history of Site development and changes through construction and other activities. In addition, analysis has been carried out for the identified chemical and physical parameters only, and it should not be inferred that other chemical species or physical conditions are not present. WSP cannot warrant against undiscovered environmental liabilities or adverse impacts off-Site.

The original of this digital file will be kept by WSP for a period of not less than 11 years. As the digital file transmitted to the intended recipient is no longer under the control of WSP, its integrity cannot be assured. As such, WSP does not guarantee any modifications made to this digital file subsequent to its transmission to the intended recipient.

This limitations statement is considered an integral part of this report.

Tables

Table 1: Well Records - Domestic

Table 1. Well Records - Dolliestic										
Well ID	Landowner	Date Completed	Total Drilled Depth (mGL)	Listed Well Type	Static Water Level (m)	Test Rate (L/min)	Test Rate (m³/day)	Outer Well Diameter (cm)		
Surficial										
341415	HERRON EST	1998-06-08	12.19	Test Hole- Decommissioned	2.83	9.09	13.09	0.00		
341416	HERRON EST	1998-06-08	12.19	Test Hole- Decommissioned	2.65	1.14	1.64	0.00		
349515	MERRITT, CARL	1987-02-09	12.19	Deepened	3.05	2.27	3.27	16.81		
357782	ARCHER, CAREN/STEVE	1987-07-29	17.07	New Well	2.44	13.64	19.64	16.81		
359886	THOMPSON, AL	1991-07-16	13.11	New Well	2.44	54.55	78.55	16.81		
364932	GLASSFORD, A.R.	1992-05-14	15.24	New Well	10.97	36.37	52.37	16.81		
379701	BUMSTEAD, BRIAN	1995-10-18	13.41	New Well	3.51	9.09	13.09	16.81		
387456	MCARUTHER, JAMES	1966-09-07	5.18	New Well	1.52	113.65	163.66	15.57		
387458	GRAVES, G.	1968-06-11	16.76	New Well	1.22	2.27	3.27	0.00		
387459	ELSDON	1977-07-05	17.07	New Well	3.35	9.09	13.09	17.78		
387464	COCKING, JIM	1981-11-02	12.50	New Well	4.57	43.19	62.19	14.12		
387504	EARLY, JOHN	1975-06-11	12.19	New Well	2.74	18.18	26.18	13.97		
387508	BISHOP, ROBIN	1969-09-01	6.71	New Well- Decommissioned	1.83	45.46	65.46	12.70		
387510	CHALLICE, C.	1972-06-01	11.89	New Well	6.10	13.64	19.64	0.00		
387511	B&G CONSTR	1972-11-01	9.14	New Well	2.44	90.92	130.92	15.24		
387519	NEWLANDS, B.	1974-11-04	9.14	New Well	0.00	22.73	32.73	16.84		
387520	KUNES, VUCLAV	1975-06-21	12.80	New Well	3.05	31.82	45.82	11.43		
387625	RICHTER, PAUL	1974-01-01	10.06	New Well	3.05	4.55	6.55	15.88		
387626	GRAHAM, E.	1970-11-01	11.28	New Well	4.88	45.46	65.46	0.00		
387627	TEGHTMEYER, ROB	1975-02-24	9.45	New Well	3.35	68.19	98.19	0.00		
387633	KOGMA, J.	1971-04-01	8.84	New Well	3.35	113.65	163.66	12.40		
387635	JONES, COLIN	1970-11-01	6.40	New Well	3.66	27.28	39.28	15.24		
418094	RIDLEY, HAROLD	1974-05-27	12.19	New Well	2.44	6.82	9.82	15.24		
Bedrock	,									
341256	DALRYMPLE, LORNE #3832	1999-09-03	50.29	New Well	11.49	9.09	13.09	16.81		
341491	FRENCH, KIM #3696	1999-03-31	24.38	New Well	11.89	22.73	32.73	16.81		
349187	RUBEN, P. PALMER K.	1992-11-17	30.48	New Well- Decommissioned	10.67	6.82	9.82	16.81		
349188	RUBEN P/PALMER K.	1992-11-23	19.81	New Well	9.75	18.18	26.18	16.81		
349754	CARRUTHERS, BARRY 2673	1995-05-17	29.57	New Well	0.00	13.64	19.64	16.81		
349764	AVERY, SUSAN #2698	1995-06-05	27.43	New Well	2.53	10.68	15.38	16.81		
349765	AVERY, SUSAN #2695	1995-06-01	28.04	New Well	9.36	18.18	26.18	16.81		
349769	HARE,RICHARD #2723 SITE 3	1995-06-29	32.00	New Well	19.29	36.37	52.37	16.81		

Table 1: Well Records - Domestic

Well ID	Landowner	Date Completed	Total Drilled Depth (mGL)	Listed Well Type	Static Water Level (m)	Test Rate (L/min)	Test Rate (m³/day)	Outer Well Diameter (cm)
349817	HARR, RICHARD #2680	1995-06-15	36.58	New Well	22.40	9.09	13.09	16.81
349818	HARE, RICHARD #2747	1995-07-28	33.53	New Well	20.70	22.73	32.73	16.81
351846	MCCLOY, TERRY	1990-07-07	32.00	New Well	12.19	9.09	13.09	14.12
352206	EAGER, ALAN	1990-09-18	44.20	New Well	3.05	13.64	19.64	16.81
357974	SHOULTS, IDA # 1599	1991-05-27	32.00	New Well	3.05	18.18	26.18	16.81
364931	GLASSFORD, A.R.	1992-06-05	18.90	New Well	11.58	27.28	39.28	16.81
387390	KLEIBER, W.	1970-11-01	19.81	New Well	4.88	7.96	11.46	16.51
387392	NEUFELD, VIC	1974-11-07	50.90	Deepened	17.98	9.09	13.09	15.88
367392	NEUFELD, VIC	1974-11-07	50.90	Deepened	27.13	45.46	65.46	15.88
387395	ALBERTSON	1968-06-06	28.96	New Well	10.36	13.64	19.64	13.97
387457	MCKEAGUE, D.	1967-09-08	36.58	Deepened	6.10	2.27	3.27	0.00
387463	KABATOFF, ALEX	1979-07-31	33.53	New Well	3.05	2.27	3.27	14.12
387490	KELLY, LAWRENCE	1976-07-03	18.29	New Well	1.98	13.64	19.64	17.78
387503	LOVE, H.G.	1968-06-04	18.29	New Well	3.05	4.55	6.55	15.24
387509	BISHOP, ROBIN	1969-09-01	21.34	New Well	2.13	45.46	65.46	12.70
387514	MCLENNAN, BOB	1977-03-07	34.75	New Well	13.72	4.55	6.55	14.12
387515	BRAUN, ERV	1976-07-06	25.91	New Well	4.88	10.23	14.73	14.12
387517	TRAVIS, STEVE	1979-07-08	21.34	New Well	4.57	45.46	65.46	14.12
387521	MCARTHUR, ARNOLD	1985-05-28	30.18	New Well	4.27	18.18	26.18	16.84
387591	ARCHER, STEVE #1	1987-07-28	28.96	Test Hole	2.44	4.55	6.55	16.84
387607	PEARMAIN, KEITH	1975-03-04	31.09	New Well	2.80	18.18	26.18	0.00
387617	DICK, LEO	1975-02-26	21.34	New Well	2.44	45.46	65.46	14.12
387628	WRATHALL, G.M.	1967-09-20	21.34	New Well	2.74	2.27	3.27	16.84
387631	BLAKLY, W.E.	1971-06-01	34.14	New Well	14.33	90.92	130.92	13.16
387645	BRAGG CREEK TRADING POST	1981-02-01	28.04	New Well	3.66	2.27	3.27	0.00
390232	LERNER, DENNIS	1968-06-21	29.26	New Well	3.35	9.09	13.09	0.00
458941	HOLSCHUH, CHARLIE#3338	2001-10-10	36.58	Deepened	3.35	2.27	3.27	16.81
491217	DEAN, DON	1998-07-14	24.38	New Well	1.52	90.92	130.92	16.81
1020214	RENAUD, ALAIN	1998-09-30	30.48	New Well	2.41	11.37	16.37	16.81
1021522	MCKEAGUE, DOUG	2007-08-07	49.68	New Well	0.00	18.18	26.18	16.81
1611155	FRENCH, KIM	2022-09-05	28.96	New Well	11.40	34.10	49.10	16.84
2066214	MACALLISTER, EDITH	2018-10-25	53.34	New Well	2.32	27.28	39.28	16.83
9546320	MINTY, DEV	2017-09-03	41.15	New Well	2.83	6.82	9.82	16.81
350053	MCHUGH, DAN	2016-08-30	89.92	Deepened	51.82	2.27	3.27	16.84
350053	EATON, LES #3359	1998-01-30	67.06	New Well	12.59	9.09	13.09	16.81
350053	MCHUGH, DAN	2007-09-10	71.63	Deepened	19.81	1.14	1.64	16.81
1022750	WAKEFIELD, DAVE & IRIS	2016-05-24	65.53	New Well	16.52	4.55	6.55	16.84

Table 2: Well Records - Miscellaneous

Well ID	Landowner	Date Completed	Total Drilled Depth (mGL)	Listed Well / Record Type	Static Water Level (m)	Test Rate (L/min)	Test Rate (m³/day)	Outer Well Diameter (cm)		
Surficial										
387504	EARLY, JOHN	1975-06-11	12.19	New Well	2.74	18.18	26.18	13.97		
387623	KLINE, ROGER	1967-09-11	9.14	New Well	3.35	-	0.00	16.84		
387633	KOGMA, J.	1971-04-01	8.84	New Well	3.35	113.65	163.66	12.40		
465414	REID, CROWTHER & PARTNERS LTD	-	0.00	Spring	ı	ı	0.00	0.00		
Bedrock										
387455	ELKANA RANCH LTD	1966-06-15	48.77	Dry Hole	-	-	0.00	12.70		
387512	MCKEAQUE, D.K.	1981-07-08	48.77	Dry Hole	-	1	0.00	0.00		
387591	ARCHER, STEVE #1	1987-07-28	28.96	Test Hole	2.44	4.55	6.55	16.84		
387615	SHLAHT, ALF	1973-07-01	33.22	Dry Hole	ı	ı	0.00	0.00		
2095057	MASCH, KLAUS	1961-07-01	21.34	Well Inventory	21.34	ı	0.00	-		

Note:

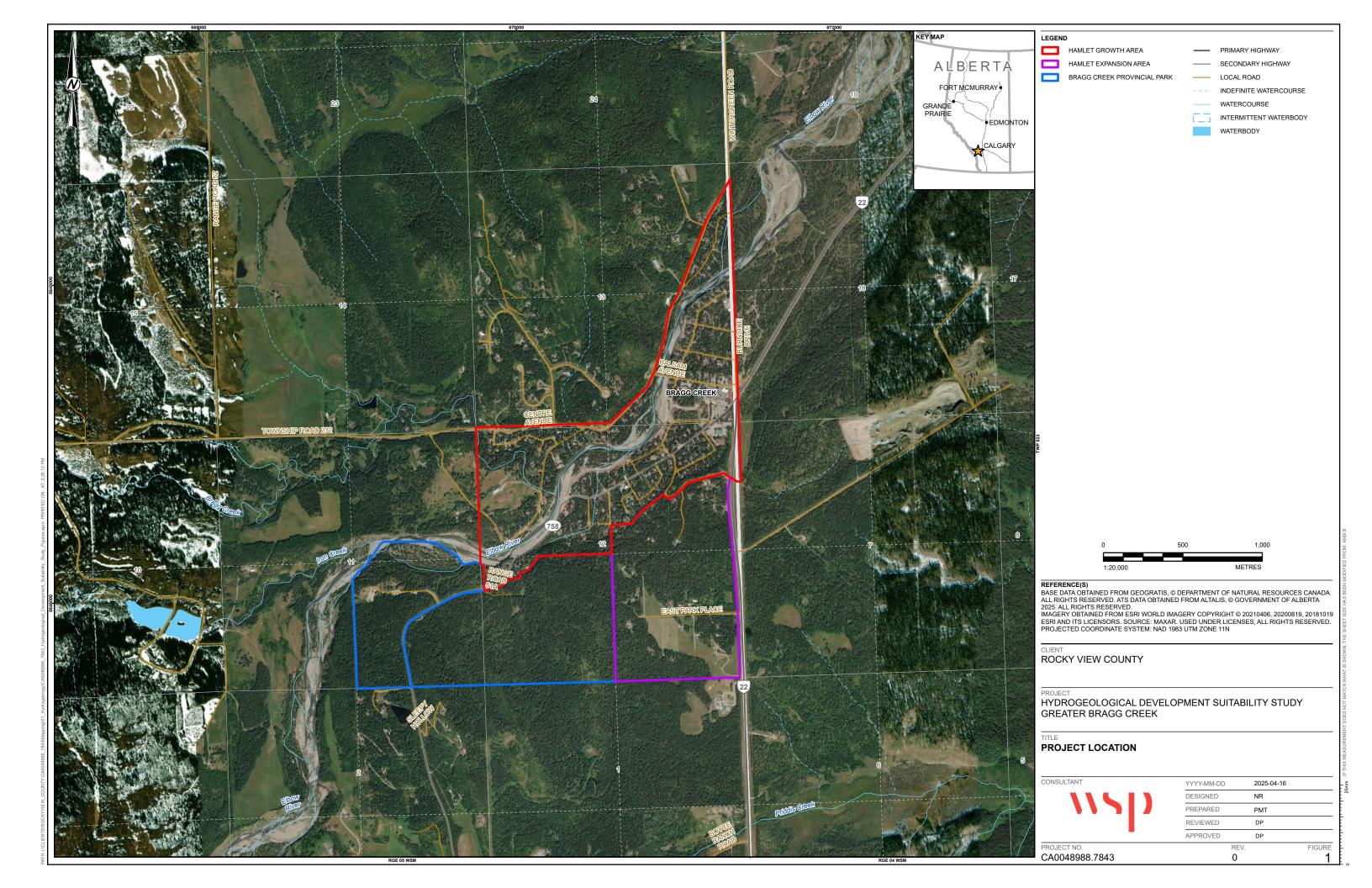
mGL = metres below ground level

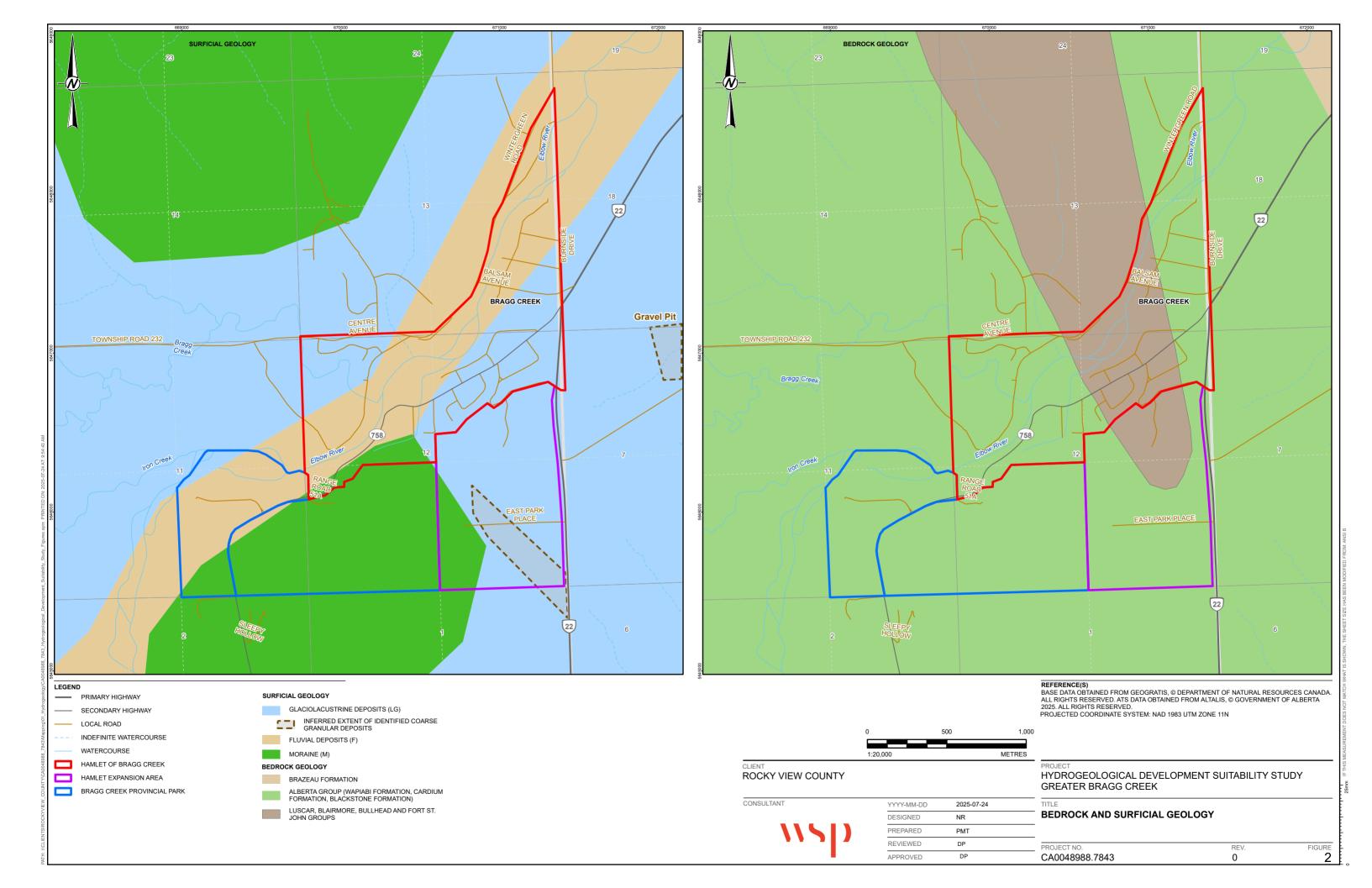
Table 3: Water Licences

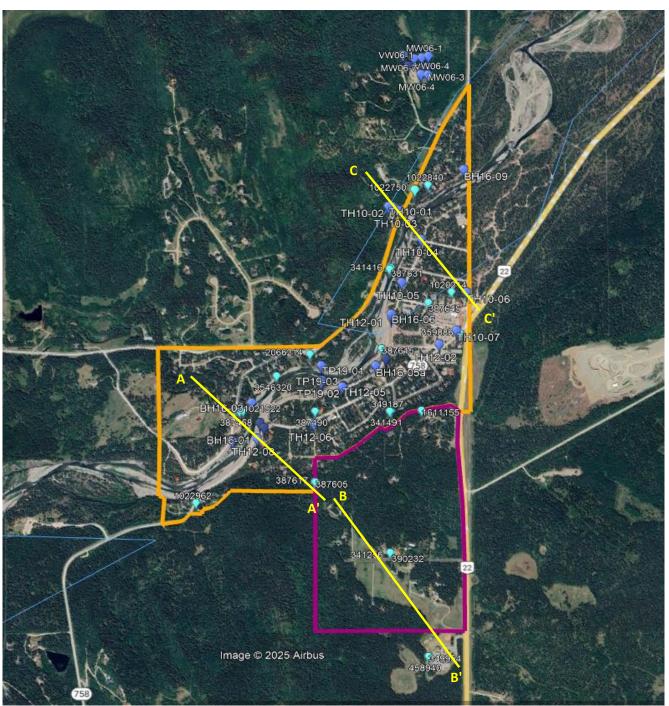
Allocation #	Priority	Licensee	Purpose	Diversion Quantity (m³)	Diversion Rate (m³/day)	Allocation Type
10751	1981-01-19-0001	Wintergreen Woods Water Utility Ltd.	Recreation	201,060	4924.8	Surface Water
13959	1976-07-30-0002	Rocky View County	Municipal	39,470	1382.4	Surface Water
14981	1974-08-20-0002	Elkana Residents	Municipal	86,350	172.8	Surface Water
201198	2009-08-17-0002	Elkana Residents Water Co-op Limited	Municipal	0	864	Surface Water
16120	1981-04-10-0003	Bavarian Inn	Recreation	1,230	0.65	Groundwater
230328	1969-05-16-0001	Alberta Environment and Portected Areas	Government Holdback	617	86.4	Surface Water
237535	2009-08-17-0002	Alberta Environment and Portected Areas	Government Holdback	0	0	Surface Water
237537	1974-08-20-0002	Alberta Environment and Portected Areas	Government Holdback	0	0	Surface Water
DRALOC0011584	2009-08-17-0002	Rocky View County	Municipal	0	864	Surface Water
DRALOC0015195		G.S. Barbecue Steak Pit Ltd.	Commercial	18,500	86.4	Surface Water
DRALOC0015910	1964-10-21-0002	Rocky View County	Water Management	0	0	Surface Water

Table 4: Estimated Extent of Elbow River Flood Impacts (1:100 year event)

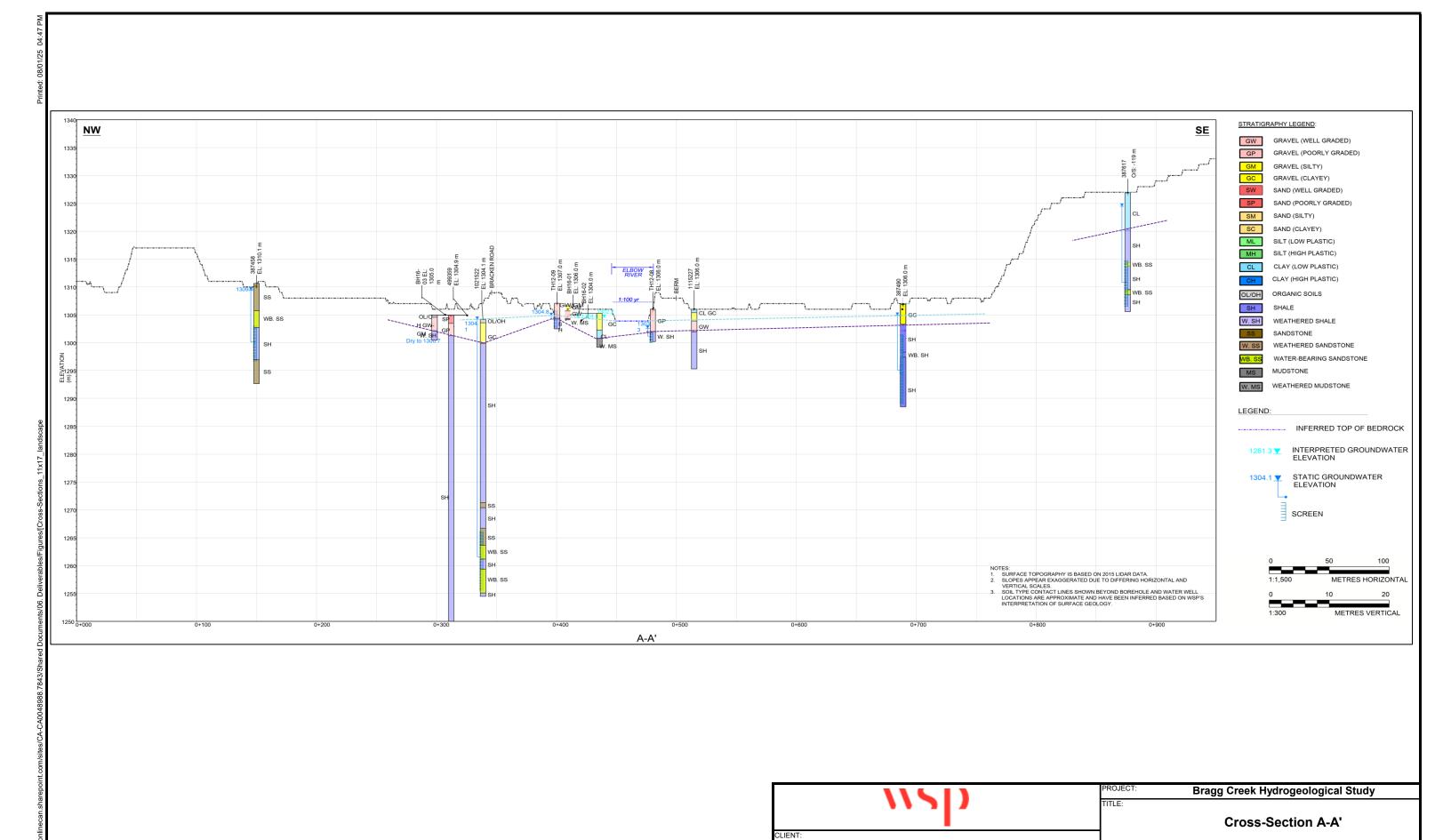
Non-Hood River Centerline Stationing (Figure 9) Non-Hood River Centerline Stationing (Figure 9) Non-Hood River (masi) 1:100 year (masi)			Level – 1:100 year	Elevation (masl –		Phreatic Surface Elevation at 'x' (masl)			
Stationing (Figure 9)	River Centerline	Non-Flood River			Distance (x) From River	Base Case	Sensitivity	Analysis	
10+150					Flood	m/s , $S_y = 0.2$, t	$K = 1 \times 10^{-4}$		
10+150					10	1310.96	-	1310.89	
10+100 1307.5 3.8 1323 150 1307.87 - 1307.66 200 1307.60 - 1307.50 300 1307.50 - 1307.50 - 1307.50 - 1307.50 - 1307.50 - 1307.50 - 1307.50 - 1307.50 - 1307.50 - 1307.50 - 1307.50 - 1307.50 - 1					50	1309.71	-	1309.40	
10+700	10+150	1207.5	2.0	1222	100	1308.53	-	1308.17	
10+700 1303 4.3 1306 1307.50 - 1307.50 1306.25 1306.84 1305.50 1303.51 1305.50 1303.51 1305.50 1303.61 1305.76 1309.15 1200 1303.42 1303 1303.18 1303 1303.03 1303.03 1303.03 1303.00 13	10+150	1307.5	3.0	1323	150	1307.87	•	1307.66	
10+700					200	1307.60	•	1307.52	
10+700					300	1307.50	•	1307.50	
10+700					10	1306.92	1306.25	1306.84	
10+700					50	1305.50	1303.51	1305.15	
11+000 1301.5	40.700	4202	4.0	1200	100	1304.17	1303.01	1303.76	
11+000	10+700	1303	4.3	1306	150	1303.42	1303	1303.18	
11+000					200	1303.12	1303	1303.03	
11+000 1301.5					300	1303.00	1303	1303	
11+000					10	1305.24	1304.60		
11+000					50	1303.89	1301.99	-	
11+000	44.000					1302.61		-	
11+550 1297.5 3.7 1302 1301.61 1301.50	11+000	1301.5	4.1	1305				-	
11+550 1297.5 3.7 1302 1301.50 1301.50				-				_	
11+550								_	
11+550								_	
11+550								_	
12+100								-	
12+100 1293 4.0 1297.5 10 1296.65 - - -	11+550	1297.5	3.7	1302			-	_	
12+100 1293 4.0 1297.5 10 1296.65 - - -							-	-	
12+100							-	_	
12+100							-	_	
12+100							-	-	
12+100							-	_	
12+450 1290.5 4.4 1294.5 1294.5 1294.5 1294.5 1294.5 1294.5 1294.5 1294.5 1294.5 1294.5 1294.5 1294.5 1290.5 1290.62	12+100	1293	4.0	1297.5			-	_	
12+450 1290.5 4.4 1294.5 1294.5 10 1294.51 - -								-	
12+450				-					
12+450								-	
12+450							_	_	
12+450							_	-	
12+800 1287.1 4.2 1290.5 1290.5 - <	12+450	1290.5	4.4	1294.5			-	_	
12+800 1287.1 4.2 1290.5 300 1290.50							-	_	
12+800 1287.1 4.2 1290.5 10 1290.93									
12+800 1287.1 4.2 1290.5 50 1289.54 100 1288.24 150 1287.51 200 1287.21							-		
12+800 1287.1 4.2 1290.5 100 1288.24 150 1287.51 200 1287.21							-		
12+800 1287.1 4.2 1290.5 150 1287.51									
200 1287.21	12+800	1287.1	4.2	1290.5					
								-	
, , , , , , , , , , , , , , , , , , , ,					300	1287.10	-	-	


Note:

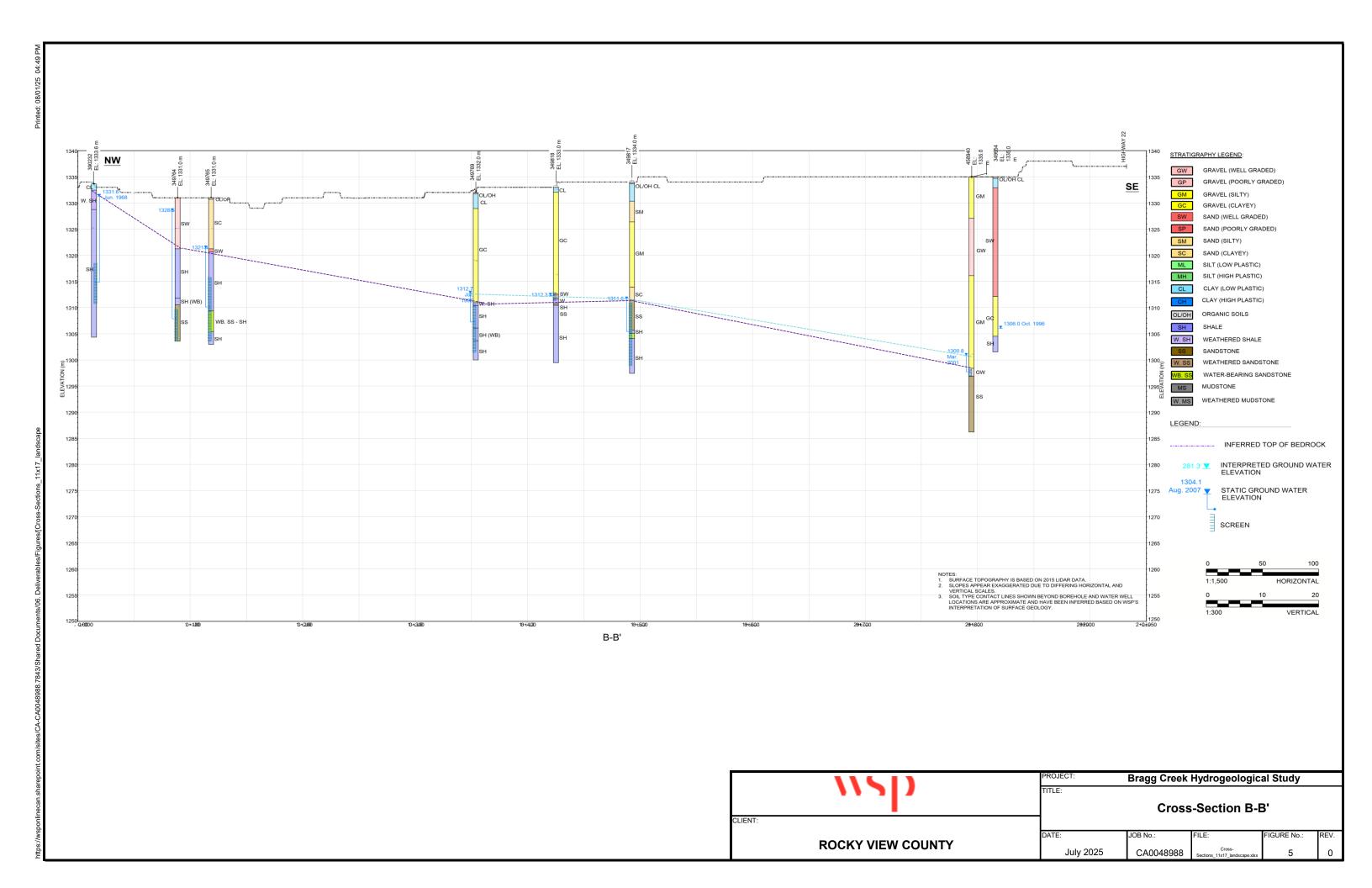

bold type = water table rise at or near ground surface (within 2.2m bgs) at given distance, x.

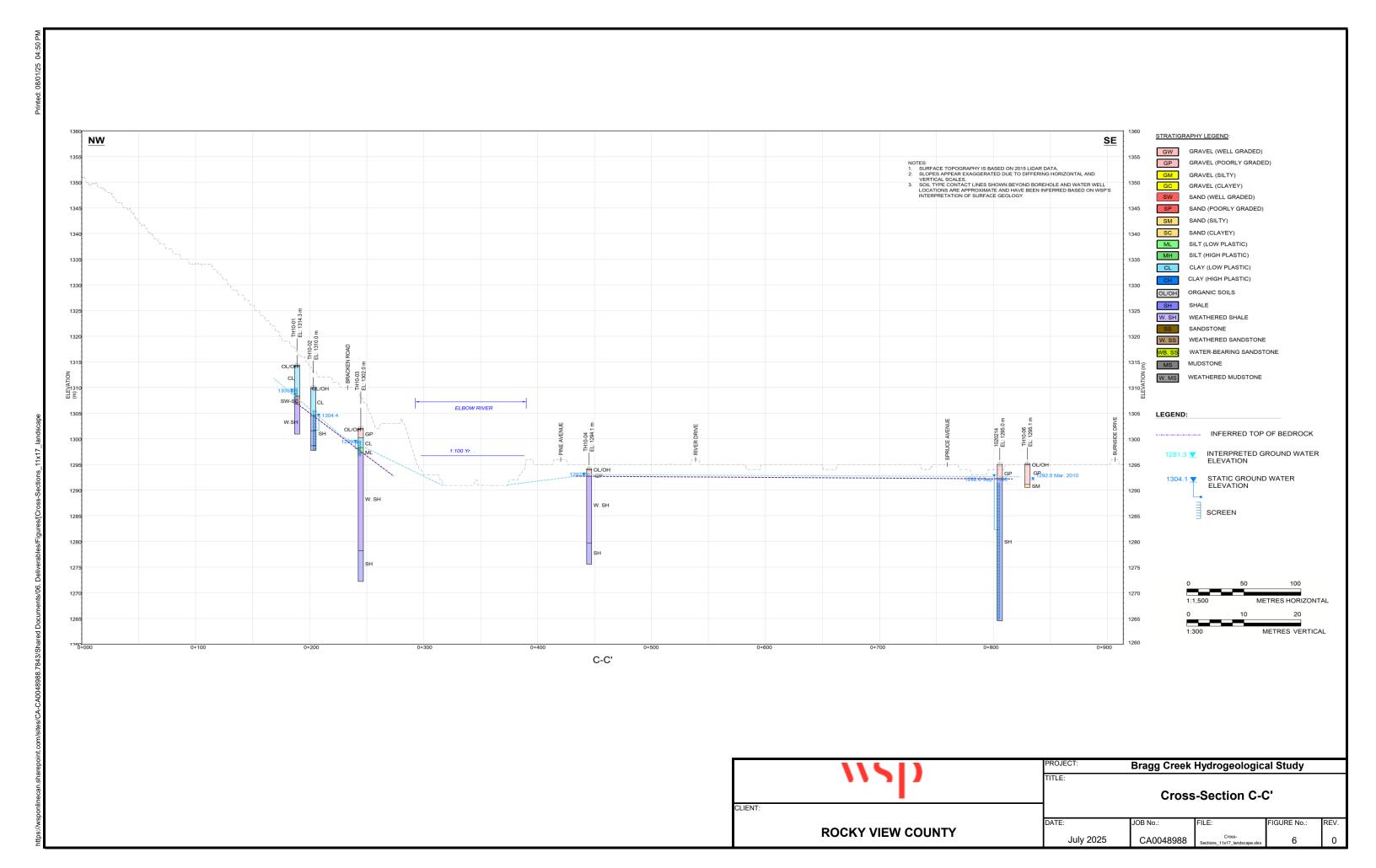


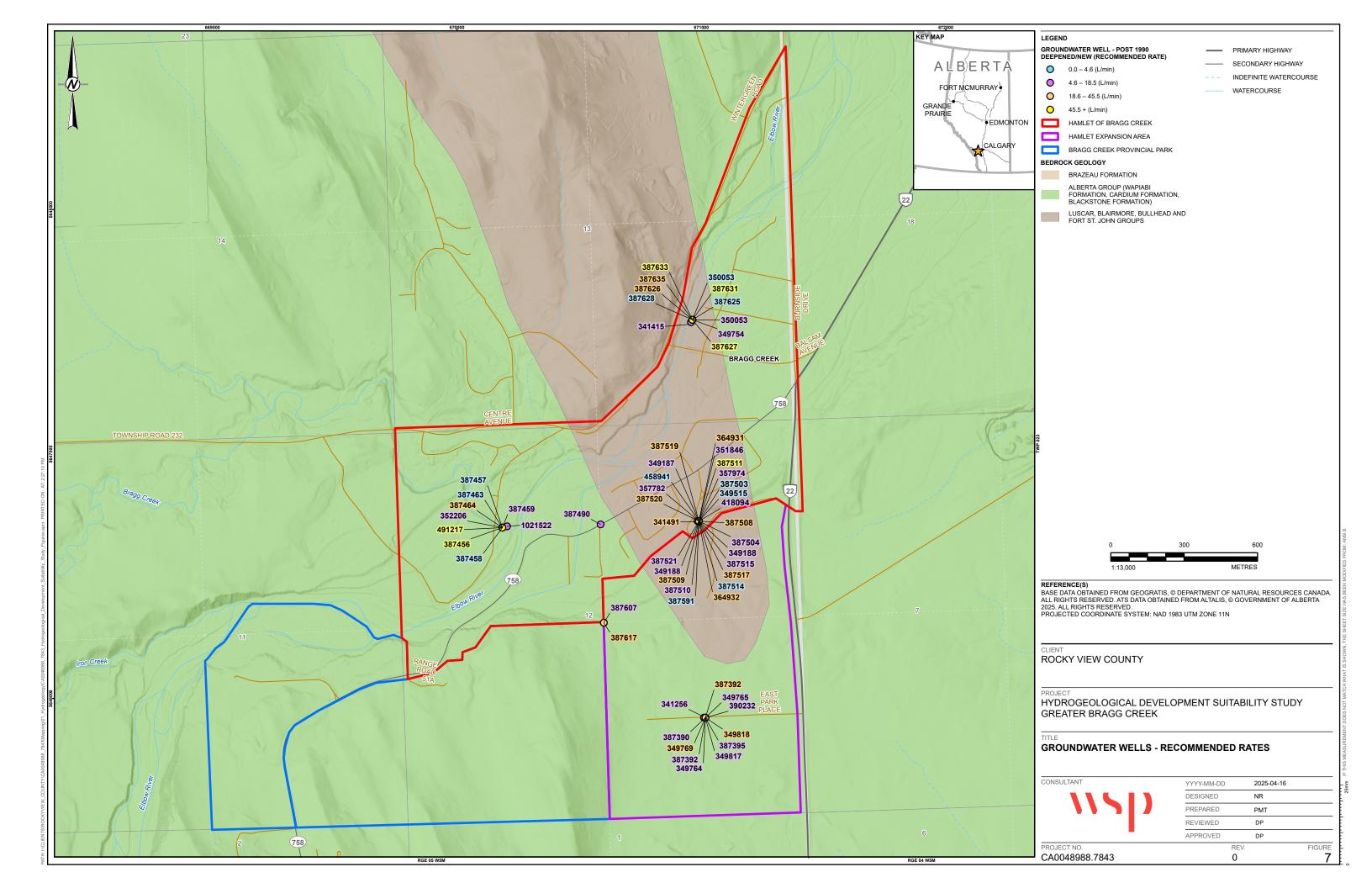
Figures

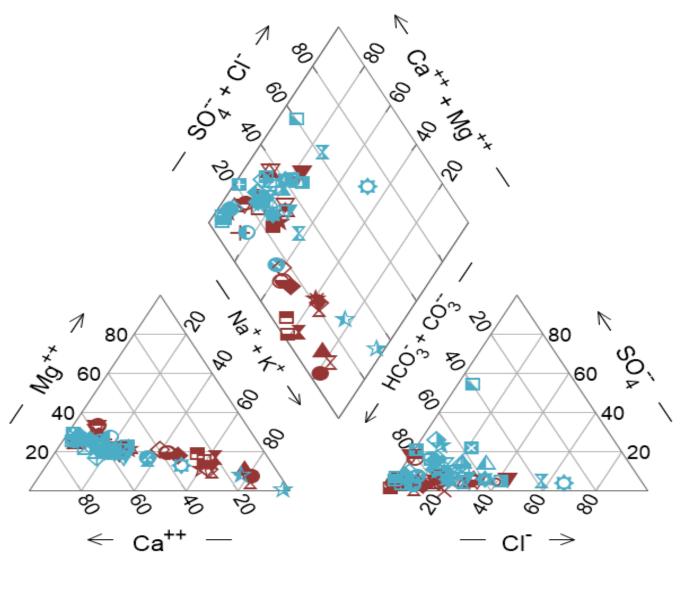


****	PROJECT: Bragg Creek Hydrogeological Development Suitability						
יןכוו	TITLE:	Bor	ehole and Section	n Plan			
CLIENT:							
	DATE:	JOB No.:	FILE:	FIGURE No.:	REV.		
Rocky View County	June 2025	CA0048988	Figure-Section Plan.xlsx	3	0		




ROCKY VIEW COUNTY


July 2025


CA0048988

IGURE No.:

Surficial

▲ Bedrock

% meq/kg

END NOTE(S)

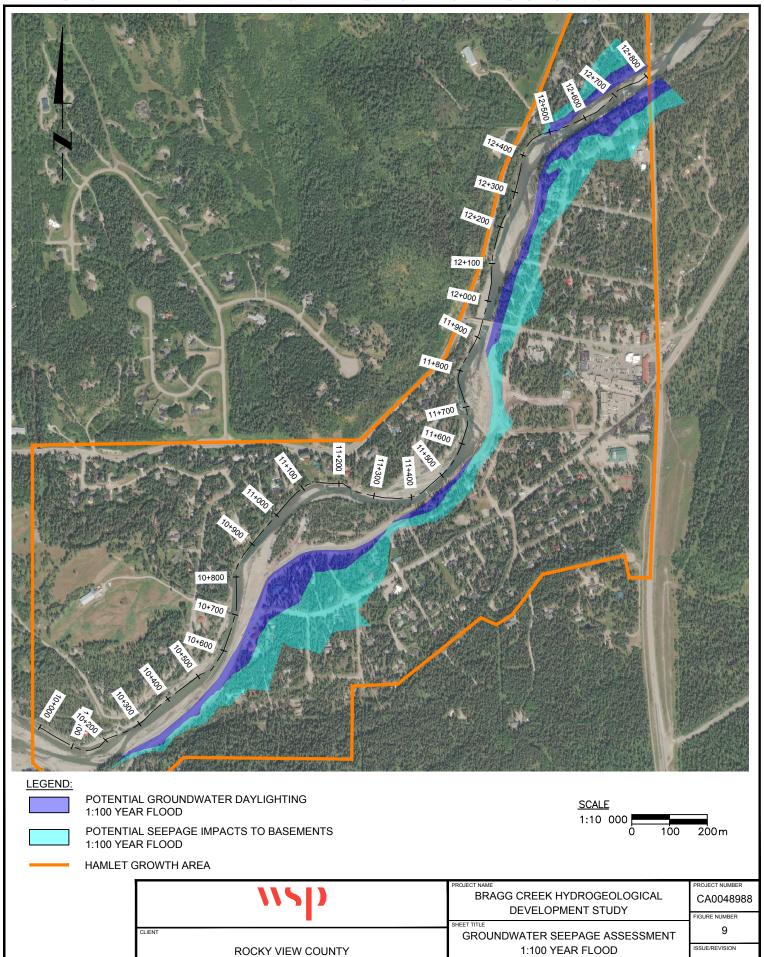
Rocky View County

PROJECT
Hydrogeological Development Suitability Study Greater Bragg
Creek

REFERENCE NA CONSULTANT

 YYYY-MM-DD
 2023-09-14

 PREPARED
 NR


 DESIGN
 NR

 REVIEW
 DP

 APPROVED
 DP

TITLE
Piper Plot - Shallow and Bedrock Aquifers

PROJECT No. PHASE Rev. FIGURE CA0048988.7843 2 0 8

0

APPENDIX A

Water Well Reports

View in Imperial

Export to Excel

Groundwater Wells

Please click the water Well ID to generate the Water Well Drilling Report.

GIC Well ID	LSD	SEC	TWP	RGE	М	DRILLING COMPANY	DATE COMPLETED	DEPTH (m)	TYPE OF WORK	USE	СНМ	LT	PT	WELL OWNER	STATIC LEVEL (m)	TEST RATE (L/min)	SC_DIA (cm)
<u>341256</u>	SE	12	23	5	5	AARON DRILLING INC.	1999-09-03	50.29	New Well	Domestic		11	5	DALRYMPLE, LORNE #3832	11.49	9.09	16.81
<u>341415</u>	SE	13	23	5	5	AARON DRILLING INC.	1998-06-08	12.19	Test Hole- Decommissioned	Domestic		4		HERRON EST	2.83	9.09	0.00
<u>341416</u>	SE	13	23	5	5	AARON DRILLING INC.	1998-06-08	12.19	Test Hole- Decommissioned	Domestic		6		HERRON EST	2.65	1.14	0.00
341491	NE	12	23	5	5	AARON DRILLING INC.	1999-03-31	24.38	New Well	Domestic		9	6	FRENCH, KIM #3696	11.89	22.73	16.81
<u>349187</u>	NE	12	23	5	5	AARON DRILLING INC.	1992-11-17	30.48	New Well- Decommissioned	Domestic		6		RUBEN, P. PALMER K.	10.67	6.82	16.81
349188	NE	12	23	5	5	AARON DRILLING INC.	1992-11-23	19.81	New Well	Domestic		7		RUBEN P/PALMER K.	9.75	18.18	16.81
349188	NE	12	23	5	5	AARON DRILLING INC.	1992-11-23	19.81	New Well	Domestic		7	7	RUBEN P/PALMER K.	9.75	18.18	16.81
<u>349241</u>	SE	13	23	5	5	AARON DRILLING INC.	1988-07-13	30.48	New Well- Decommissioned	Domestic		3		DON JOY MGMT			0.00
349515	NE	12	23	5	5	AARON DRILLING INC.	1987-02-09	12.19	Deepened	Domestic		2		MERRITT, CARL	3.05	2.27	16.81
349754	SE	13	23	5	5	AARON DRILLING INC.	1995-05-17	29.57	New Well	Domestic		7	33	CARRUTHERS, BARRY 2673	0.00	13.64	16.81
349764	SE	12	23	5	5	AARON DRILLING INC.	1995-06-05	27.43	New Well	Domestic		5	16	AVERY, SUSAN #2698	2.53	10.68	16.81
349765	SE	12	23	5	5	AARON DRILLING INC.	1995-06-01	28.04	New Well	Domestic		6	40	AVERY, SUSAN #2695	9.36	18.18	16.81
<u>349769</u>	SE	12	23	5	5	AARON DRILLING INC.	1995-06-29	32.00	New Well	Domestic		7	40	HARE,RICHARD #2723 SITE 3	19.29	36.37	16.81
349817	SE	12	23	5	5	AARON DRILLING INC.	1995-06-15	36.58	New Well	Domestic		14	16	HARR, RICHARD #2680	22.40	9.09	16.81
349818	SE	12	23	5	5	AARON DRILLING INC.	1995-07-28	33.53	New Well	Domestic		7	10	HARE, RICHARD #2747	20.70	22.73	16.81
<u>349819</u>	SE	12	23	5	5	AARON DRILLING INC.	1995-07-31	45.72	New Well- Decommissioned	Domestic		7		HARE,RICHARD #2733	21.03		16.81
<u>349820</u>	SE	12	23	5	5	AARON DRILLING INC.	1995-07-31	45.72	New Well- Decommissioned	Domestic		6		HARE, RICHARD #2716			16.81
<u>349936</u>		13	23	5	5	AARON DRILLING INC.	1996-09-09	45.72	New Well- Decommissioned	Domestic		7		MOON, TOM #TH1	0.00		0.00
<u>350053</u>	SE	13	23	5	5	AARON DRILLING INC.	2016-08-30	89.92	Deepened	Domestic		6	18	MCHUGH, DAN	51.82	2.27	16.84
350053	SE	13	23	5	5	AARON DRILLING INC.	1998-01-30	67.06	New Well	Domestic		2	13	EATON, LES #3359	12.59	9.09	16.81

Printed on 10/1/2024 6:29:21 PM Page: 1 / 9

View in Imperial Export to Excel

GIC Well	LSD	SEC	TWP	RGE	М	DRILLING COMPANY	DATE COMPLETED	DEPTH (m)	TYPE OF WORK	USE	СНМ	LT	PT	WELL OWNER	STATIC LEVEL (m)	TEST RATE (L/min)	SC_DIA (cm)
350053		13	23	5	5	AARON DRILLING INC.	2007-09-10	` '	Deepened	Domestic		2		MCHUGH, DAN	19.81	1.14	16.81
351846	NE	12	23	5	5	BAKER WATER WELLS	1990-07-07	32.00	New Well	Domestic		4		MCCLOY, TERRY	12.19	9.09	14.12
352206	NW	12	23	5	5	DOLOMITE DRILLING	1990-09-18	44.20	New Well	Domestic		12		EAGER, ALAN	3.05	13.64	16.81
354349	SE	12	23	5	5	UNKNOWN DRILLER		29.26	Chemistry	Domestic				PROUD, KELLY			0.00
357782	NE	12	23	5	5	KRIEGER DRILLING LTD.	1987-07-29	17.07	New Well	Domestic		5		ARCHER, CAREN/STEVE	2.44	13.64	16.81
357974	NE	12	23	5	5	AARON DRILLING INC.	1991-05-27	32.00	New Well	Domestic		5		SHOULTS, IDA # 1599	3.05	18.18	16.81
<u>359886</u>	1	13	23	5	5	ALBERTA SOUTHERN EXPLORATION DRILLING LTD.	1991-07-16	13.11	New Well	Domestic		2		THOMPSON, AL	2.44	54.55	16.81
<u>361443</u>	NE	12	23	5	5	UNKNOWN DRILLER		0.00	Chemistry	Domestic				KLEPACKI, CYNTHIA R			0.00
<u>361444</u>	NE	12	23	5	5	UNKNOWN DRILLER		0.00	Chemistry	Domestic				MAGEE, MIKE/JOANNE			0.00
<u>363237</u>	SE	13	23	5	5	UNKNOWN DRILLER		0.00	Chemistry	Domestic				BUCONJIC, APRIL/GORDAN			0.00
<u>363666</u>	NE	12	23	5	5	UNKNOWN DRILLER		0.00	Chemistry	Domestic				BRISCO, STUART/PHILIPPA			0.00
364931	NE	12	23	5	5	WATKINS DRILLING	1992-06-05	18.90	New Well	Domestic		3	28	GLASSFORD, A.R.	11.58	27.28	16.81
364932	NE	12	23	5	5	WATKINS DRILLING	1992-05-14	15.24	New Well	Domestic		3	9	GLASSFORD, A.R.	10.97	36.37	16.81
<u>379701</u>	9	12	23	5	5	ALBERTA SOUTHERN EXPLORATION DRILLING LTD.	1995-10-18	13.41	New Well	Domestic		5	16	BUMSTEAD, BRIAN	3.51	9.09	16.81
<u>387385</u>	SE	12	23	5	5	UNKNOWN DRILLER		25.91	Chemistry	Domestic				NEUFELD, VIC	25.91		0.00
387389	SE	12	23	5	5	UNKNOWN DRILLER		60.96	Chemistry	Domestic				MACLELLAN, GLEN	33.53		0.00
387390	SE	12	23	5	5	DEL'S DRILLING	1970-11-01	19.81	New Well	Domestic		9		KLEIBER, W.	4.88	7.96	16.51
387392	SE	12	23	5	5	DEL'S DRILLING	1974-11-07	50.90	Deepened	Domestic		4		NEUFELD, VIC	17.98	9.09	15.88
387392	SE	12	23	5	5	DEL'S DRILLING	1974-11-07	50.90	Deepened	Domestic		4		NEUFELD, VIC	27.13	45.46	15.88
387395	SE	12	23	5	5	PARSONS DRLG	1968-06-06	28.96	New Well	Domestic		6		ALBERTSON	10.36	13.64	13.97

Printed on 10/1/2024 6:29:21 PM Page: 2 / 9

View in Imperial Export to Excel

GIC Well ID	LSD	SEC	TWP	RGE	М	DRILLING COMPANY	DATE COMPLETED	DEPTH (m)	TYPE OF WORK	USE	СНМ	LT	PT	WELL OWNER	STATIC LEVEL (m)	TEST RATE (L/min)	SC_DIA (cm)
387398	SE	12	23	5	5	UNKNOWN DRILLER		0.00	Chemistry	Domestic				JARDINE, DAVID			0.00
<u>387400</u>	2	12	23	5	5	UNKNOWN DRILLER		6.10	Chemistry	Domestic				WILSON, VERN O.C.	6.10		0.00
387452	NW	12	23	5	5	UNKNOWN DRILLER		8.53	Chemistry	Unknown				WEBSTER, EARL	4.27		0.00
387453	NW	12	23	5	5	UNKNOWN DRILLER		19.51	Chemistry	Domestic				ELSDON, S.			0.00
<u>387454</u>	NW	12	23	5	5	UNKNOWN DRILLER		18.29	Chemistry	Unknown				ECHLIN, R.			0.00
<u>387455</u>	NW	12	23	5	5	PARSONS DRLG	1966-06-15	48.77	Dry Hole			3		ELKANA RANCH LTD			12.70
387456	NW	12	23	5	5	PARSONS DRLG	1966-09-07	5.18	New Well	Domestic		3		MCARUTHER, JAMES	1.52	113.65	15.57
387457	NW	12	23	5	5	ADAIR D	1967-09-08	36.58	Deepened	Domestic		2		MCKEAGUE, D.	6.10	2.27	0.00
387458	NW	12	23	5	5	ADAIR D	1968-06-11	16.76	New Well	Domestic		5		GRAVES, G.	1.22	2.27	0.00
387459	NW	12	23	5	5	DEL'S DRILLING	1977-07-05	17.07	New Well	Domestic		4		ELSDON	3.35	9.09	17.78
<u>387460</u>	NW	12	23	5	5	UNKNOWN DRILLER		3.05	Chemistry	Domestic				DOCKER, C.	2.44		0.00
387461	NW	12	23	5	5	DEL'S DRILLING	1979-06-27	18.29	Dry Hole	Domestic		4		PAREL, A.J.			0.00
387462	NW	12	23	5	5	DEL'S DRILLING	1979-06-28	27.43	Dry Hole	Domestic		3		KABATOFF, ALEC			0.00
387463	NW	12	23	5	5	DEL'S DRILLING	1979-07-31	33.53	New Well	Domestic		3		KABATOFF, ALEX	3.05	2.27	14.12
387464	NW	12	23	5	5	KRIEGER DRILLING LTD.	1981-11-02	12.50	New Well	Domestic		7		COCKING, JIM	4.57	43.19	14.12
<u>387465</u>	NW	12	23	5	5	UNKNOWN DRILLER		18.29	Chemistry	Domestic				WORKMAN, RHONDA			0.00
387466	NW	12	23	5	5	UNKNOWN DRILLER		10.67	Chemistry	Domestic				SUKOVIEFF, D.F.			0.00
387467	NW	12	23	5	5	UNKNOWN DRILLER		0.00	Chemistry	Domestic				CLARK, KIMBERLEY			0.00
387468	NW	12	23	5	5	UNKNOWN DRILLER		0.00	Chemistry	Domestic				BAVARIAN INN			0.00
387469	NW	12	23	5	5	UNKNOWN DRILLER		9.14	Chemistry	Domestic				PENMAN, CHERYL/DAVE			0.00

Printed on 10/1/2024 6:29:21 PM Page: 3 / 9

View in Imperial Export to Excel

GIC Well ID	LSD	SEC	TWP	RGE	М	DRILLING COMPANY	DATE COMPLETED	DEPTH (m)	TYPE OF WORK	USE	СНМ	LT	PT	WELL OWNER	STATIC LEVEL (m)	TEST RATE (L/min)	SC_DIA (cm)
<u>387470</u>	NW	12	23	5	5	UNKNOWN DRILLER		3.66	Chemistry	Domestic				HIND, PETER			0.00
387471	NW	12	23	5	5	UNKNOWN DRILLER		0.00	Chemistry	Domestic				MCKEAGUE, DOUG			0.00
<u>387472</u>	NW	12	23	5	5	UNKNOWN DRILLER		0.00	Chemistry	Domestic				SPRING, G.			0.00
<u>387473</u>	NW	12	23	5	5	UNKNOWN DRILLER		0.00	Chemistry	Domestic				EDWARDS, NORM/KATHLEEN			0.00
387474	NW	12	23	5	5	UNKNOWN DRILLER		3.66	Chemistry	Domestic	1			WINNITOY, W.			0.00
<u>387476</u>	NW	12	23	5	5	UNKNOWN DRILLER		1.83	Chemistry	Domestic				MCDOUGALL, R.			0.00
387477	NW	12	23	5	5	UNKNOWN DRILLER		46.33	Chemistry	Domestic				VARADI, JOSEF			0.00
387478	NW	12	23	5	5	UNKNOWN DRILLER		3.05	Chemistry	Domestic				COULAN			0.00
387480	NW	12	23	5	5	UNKNOWN DRILLER		0.00	Chemistry	Domestic				DUNFORD, J.			0.00
387482	NW	12	23	5	5	UNKNOWN DRILLER		0.00	Chemistry	Domestic				HARTFORD, CRAIG			0.00
387483	NW	12	23	5	5	UNKNOWN DRILLER		0.00	Chemistry	Domestic				PERRY, LINDA			0.00
<u>387484</u>	NW	12	23	5	5	UNKNOWN DRILLER		0.00	Chemistry	Domestic				SIMMERLING, KARL/CAROL ANNE			0.00
<u>387485</u>	NW	12	23	5	5	UNKNOWN DRILLER		0.00	Chemistry	Unknown				FORMAN, ELAINE/RAYMOND			0.00
<u>387486</u>	NW	12	23	5	5	UNKNOWN DRILLER		0.00	Chemistry	Unknown				CLEASE, HELEN/DENNIS			0.00
<u>387487</u>	NW	12	23	5	5	UNKNOWN DRILLER		0.00	Chemistry	Unknown				LINDSKOG, CHRISTIE			0.00
387488	11	12	23	5	5	UNKNOWN DRILLER		18.29	Chemistry	Domestic				RAVENHILL, ROY D.			0.00
387489	NH	12	23	5	5	UNKNOWN DRILLER		8.84	Chemistry	Domestic				KOZMA, JOHN	3.35		0.00
387490	NH	12	23	5	5	DEL'S DRILLING	1976-07-03	18.29	New Well	Domestic		4		KELLY, LAWRENCE	1.98	13.64	17.78
387491	NH	12	23	5	5	UNKNOWN DRILLER		0.00	Chemistry	Domestic				SHERIN, RICHARD D.			0.00
387492	NH	12	23	5	5	UNKNOWN DRILLER		0.00	Chemistry	Domestic				MCKINLEY			0.00

Printed on 10/1/2024 6:29:21 PM Page: 4 / 9

View in Imperial Export to Excel

GIC Well ID	LSD	SEC	TWP	RGE	М	DRILLING COMPANY	DATE COMPLETED	DEPTH (m)	TYPE OF WORK	USE	СНМ	LT	PT	WELL OWNER	STATIC LEVEL (m)	TEST RATE (L/min)	SC_DIA (cm)
387493	NH	12	23	5	5	UNKNOWN DRILLER		0.00	Chemistry	Domestic				REDMAN, D.			0.00
387494	NH	12	23	5	5	UNKNOWN DRILLER		0.00	Chemistry	Domestic				THE STEER INN			0.00
387495	NH	12	23	5	5	UNKNOWN DRILLER		10.67	Chemistry	Domestic				SUKCRIEFF, D.			0.00
387496	NH	12	23	5	5	UNKNOWN DRILLER		0.00	Chemistry	Domestic				PERROTT, STAN			0.00
387497	NE	12	23	5	5	ADAIR D	1968-05-21	30.48	New Well	Domestic		4		CANNIFF, ANDY	11.28		15.24
387498	NE	12	23	5	5	UNKNOWN DRILLER		3.96	Chemistry	Domestic				SHOULTS, GORDON			0.00
387499	NE	12	23	5	5	UNKNOWN DRILLER		3.66	Chemistry	Domestic				JENSEN, ROBERT			0.00
387500	NE	12	23	5	5	UNKNOWN DRILLER		3.66	Chemistry	Domestic				ADES, R.G.	3.20		0.00
387501	NE	12	23	5	5	UNKNOWN DRILLER		10.67	Chemistry	Domestic				KLOKEID, J.F.	1.83		0.00
387502	NE	12	23	5	5	UNKNOWN DRILLER		1.52	Chemistry	Domestic				KLOKEID, J.F.	0.76		0.00
387503	NE	12	23	5	5	ADAIR D	1968-06-04	18.29	New Well	Domestic		4		LOVE, H.G.	3.05	4.55	15.24
387504	NE	12	23	5	5	C.H. NELSON DRILLING LTD.	1975-06-11	12.19	New Well	Unknown		7		EARLY, JOHN	2.74	18.18	13.97
387505	NE	12	23	5	5	UNKNOWN DRILLER		16.76	Chemistry	Unknown				SYMES, W.E.	3.66		0.00
387506	NE	12	23	5	5	UNKNOWN DRILLER		9.75	Chemistry	Unknown				FULLERTON, STEVE	3.05		0.00
387507	NE	12	23	5	5	UNKNOWN DRILLER		5.18	Chemistry	Domestic				MCLENNAN, ROBERT	0.91		0.00
387508	NE	12	23	5	5	WATKINS DRILLING	1969-09-01	6.71	New Well- Decommissioned	Domestic		2		BISHOP, ROBIN	1.83	45.46	12.70
387509	NE	12	23	5	5	WATKINS DRILLING	1969-09-01	21.34	New Well	Domestic		4		BISHOP, ROBIN	2.13	45.46	12.70
387510	NE	12	23	5	5	OTHER	1972-06-01	11.89	New Well	Domestic		5		CHALLICE, C.	6.10	13.64	0.00
387511	NE	12	23	5	5	OTHER	1972-11-01	9.14	New Well	Domestic		4		B&G CONSTR	2.44	90.92	15.24
387512	NE	12	23	5	5	DEL'S DRILLING	1981-07-08	48.77	Dry Hole	Unknown		6		MCKEAQUE, D.K.			0.00

Printed on 10/1/2024 6:29:21 PM Page: 5 / 9

View in Imperial Export to Excel

GIC Well ID	LSD	SEC	TWP	RGE	М	DRILLING COMPANY	DATE COMPLETED	DEPTH (m)	TYPE OF WORK	USE	СНМ	LT	PT	WELL OWNER	STATIC LEVEL (m)	TEST RATE (L/min)	SC_DIA (cm)
387513	NE	12	23	5	5	UNKNOWN DRILLER		10.67	Chemistry	Domestic				EARLY, JOHN F.	3.66		0.00
387514	NE	12	23	5	5	DEL'S DRILLING	1977-03-07	34.75	New Well	Domestic		6		MCLENNAN, BOB	13.72	4.55	14.12
387515	NE	12	23	5	5	DEL'S DRILLING	1976-07-06	25.91	New Well	Domestic		6		BRAUN, ERV	4.88	10.23	14.12
<u>387516</u>	NE	12	23	5	5	UNKNOWN DRILLER		6.10	Chemistry	Domestic				KERS, MARIE	4.57		0.00
387517	NE	12	23	5	5	WARD E DRLG CO LTD	1979-07-08	21.34	New Well	Domestic		3		TRAVIS, STEVE	4.57	45.46	14.12
387518	NE	12	23	5	5	UNKNOWN DRILLER		18.29	Chemistry	Domestic				BALL, MARILYN			0.00
<u>387519</u>	NE	12	23	5	5	GOODISON WATER WELL DRILLING	1974-11-04	9.14	New Well	Domestic		2		NEWLANDS, B.	0.00	22.73	16.84
387520	NE	12	23	5	5	ZIEGLER BROS. DRILLING LTD.	1975-06-21	12.80	New Well	Domestic		3		KUNES, VUCLAV	3.05	31.82	11.43
387521	NE	12	23	5	5	KRIEGER DRILLING LTD.	1985-05-28	30.18	New Well	Domestic		11		MCARTHUR, ARNOLD	4.27	18.18	16.84
387586	NE	12	23	5	5	UNKNOWN DRILLER		0.00	Chemistry	Domestic				DAVID, J.			0.00
387587	NE	12	23	5	5	UNKNOWN DRILLER		19.81	Chemistry	Domestic				HARDAGE, ROGER/VICKI			0.00
387589	NE	12	23	5	5	UNKNOWN DRILLER		0.00	Chemistry	Domestic				MICHOR, A.			0.00
387590	NE	12	23	5	5	UNKNOWN DRILLER		0.00	Chemistry	Domestic				HOMESTEAD ANTIQUES			0.00
387591	NE	12	23	5	5	KRIEGER DRILLING LTD.	1987-07-28	28.96	Test Hole	Observation		8		ARCHER, STEVE #1	2.44	4.55	16.84
387593	NE	12	23	5	5	UNKNOWN DRILLER		12.19	Chemistry	Domestic				JANKE, ED			0.00
387594	NE	12	23	5	5	UNKNOWN DRILLER		9.14	Chemistry	Domestic				TREASURY BRANCH			0.00
387595	NE	12	23	5	5	UNKNOWN DRILLER		22.86	Chemistry	Domestic				DAVIDS, PERRY			0.00
387596	NE	12	23	5	5	UNKNOWN DRILLER		3.66	Chemistry	Domestic				SWALES, M.	2.44		0.00
387597	NE	12	23	5	5	UNKNOWN DRILLER		70.10	Chemistry	Unknown				STUPNYCKYJ, LINDA/OLEH			0.00
<u>387598</u>	NE	12	23	5	5	ALBERTA SOUTHERN EXPLORATION DRILLING LTD.	1989-06-08	54.86	New Well	Domestic		21		DEFRAINE, BILL	0.00		16.84

Printed on 10/1/2024 6:29:21 PM Page: 6 / 9

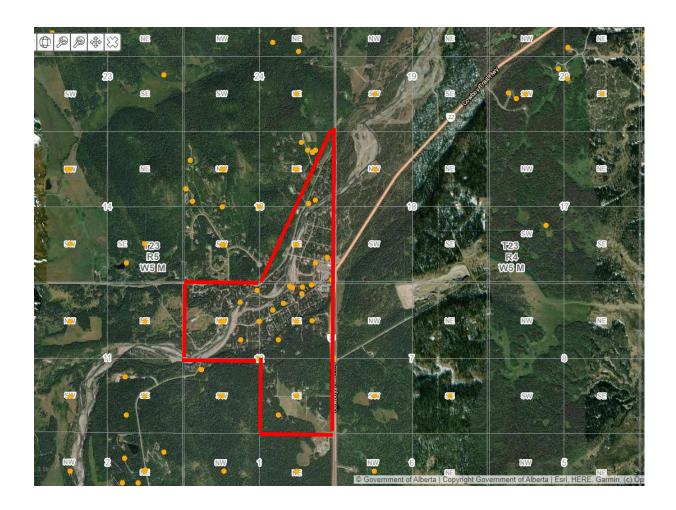
View in Imperial Export to Excel

GIC Well ID	LSD	SEC	TWP	RGE	М	DRILLING COMPANY	DATE COMPLETED	DEPTH (m)	TYPE OF WORK	USE	СНМ	LT	PT	WELL OWNER	STATIC LEVEL (m)	TEST RATE (L/min)	SC_DIA (cm)
387601	10	12	23	5	5	UNKNOWN DRILLER		36.58	Chemistry	Domestic				GRIFFIN, E.D.	6.10		0.00
387605	SE	12	23	5	5	OTHER	1974-01-01	7.32	New Well	Domestic		5		B&G CONSTR			15.24
<u>387607</u>		12	23	5	5	GOODISON WATER WELL DRILLING	1975-03-04	31.09	New Well	Domestic		5		PEARMAIN, KEITH	2.80	18.18	0.00
387615	15	12	23	5	5	DEL'S DRILLING	1973-07-01	33.22	Dry Hole	Unknown		7		SHLAHT, ALF			0.00
387617	SE	12	23	5	5	DEL'S DRILLING	1975-02-26	21.34	New Well	Domestic		9		DICK, LEO	2.44	45.46	14.12
<u>387619</u>		12	23	5	5	UNKNOWN DRILLER		3.05	Chemistry	Domestic				BRAGG CREEK SHOPPING CENTRE			0.00
387620	SE	13	23	5	5	UNKNOWN DRILLER		2.74	Chemistry	Domestic				WHITE, R.H.	2.44		0.00
387621	SE	13	23	5	5	UNKNOWN DRILLER		30.48	Chemistry	Domestic				DEGROOT, H.			0.00
387623	SE	13	23	5	5	ADAIR D	1967-09-11	9.14	New Well	Unknown		2		KLINE, ROGER	3.35		16.84
387625	SE	13	23	5	5	OTHER	1974-01-01	10.06	New Well	Domestic		4		RICHTER, PAUL	3.05	4.55	15.88
387626	SE	13	23	5	5	DEL'S DRILLING	1970-11-01	11.28	New Well	Domestic		4		GRAHAM, E.	4.88	45.46	0.00
387627	SE	13	23	5	5	DEL'S DRILLING	1975-02-24	9.45	New Well	Domestic		3		TEGHTMEYER, ROB	3.35	68.19	0.00
387628	SE	13	23	5	5	ADAIR D	1967-09-20	21.34	New Well	Domestic		2		WRATHALL, G.M.	2.74	2.27	16.84
387631	SE	13	23	5	5	PARSONS, DELBERT	1971-06-01	34.14	New Well	Domestic		9		BLAKLY, W.E.	14.33	90.92	13.16
387633	SE	13	23	5	5	PARSONS, DELBERT	1971-04-01	8.84	New Well	Unknown		4		KOGMA, J.	3.35	113.65	12.40
387635	SE	13	23	5	5	WATKINS DRILLING	1970-11-01	6.40	New Well	Domestic		1		JONES, COLIN	3.66	27.28	15.24
<u>387637</u>	SE	13	23	5	5	UNKNOWN DRILLER		3.66	Chemistry	Domestic				COX, HAROLD	2.44		0.00
387639	SE	13	23	5	5	UNKNOWN DRILLER		21.95	Chemistry	Domestic				BISHOP, R.E.	0.40		0.00
387641	SE	13	23	5	5	UNKNOWN DRILLER		12.19	Chemistry	Domestic				COX, HAROLD	3.05		0.00
<u>387642</u>	SE	13	23	5	5	UNKNOWN DRILLER		15.24	Chemistry	Domestic				MERRYFIELD, G.J.	4.88		0.00

Printed on 10/1/2024 6:29:21 PM Page: 7 / 9

View in Imperial Export to Excel

GIC Well ID	LSD	SEC	TWP	RGE	М	DRILLING COMPANY	DATE COMPLETED	DEPTH (m)	TYPE OF WORK	USE	СНМ	LT	PT	WELL OWNER	STATIC LEVEL (m)	TEST RATE (L/min)	SC_DIA (cm)
<u>387644</u>	SE	13	23	5	5	UNKNOWN DRILLER		22.86	Chemistry	Domestic				DUNFORD, J.O.H.	6.10		0.00
<u>387645</u>	1	13	23	5	5	DEL'S DRILLING	1981-02-01	28.04	New Well	Domestic		5		BRAGG CREEK TRADING POST	3.66	2.27	0.00
<u>387646</u>	SE	13	23	5	5	UNKNOWN DRILLER		6.10	Chemistry	Domestic				ELSDON, M.S.			0.00
387647	SE	13	23	5	5	UNKNOWN DRILLER		4.27	Chemistry	Domestic				MERRYFIELD			0.00
387649	SE	13	23	5	5	UNKNOWN DRILLER		3.66	Chemistry	Domestic				TEGHTMEYER, ROB L.			0.00
<u>387650</u>	SE	13	23	5	5	UNKNOWN DRILLER		0.00	Chemistry	Domestic				FUSSEL, H.			0.00
387652	SE	13	23	5	5	UNKNOWN DRILLER		0.00	Chemistry	Domestic				KING, TAMMY			0.00
<u>387653</u>	SE	13	23	5	5	UNKNOWN DRILLER		3.96	Chemistry	Domestic				NICHOL, E.			0.00
<u>387660</u>	SE	13	23	5	5	UNKNOWN DRILLER		3.05	Chemistry	Domestic				PIKE, BOB			0.00
<u>387661</u>	SE	13	23	5	5	UNKNOWN DRILLER		3.96	Chemistry	Domestic				RODGER, BRUCE			0.00
<u>387663</u>	SE	13	23	5	5	UNKNOWN DRILLER		60.96	Chemistry	Domestic				SHOULTS, H.			0.00
389410	15	12	23	5	5	UNKNOWN DRILLER		6.10	Chemistry	Domestic	1			GIBSON, DEBBIE			0.00
389420	SE	12	23	5	5	UNKNOWN DRILLER		24.38	Chemistry	Domestic	1			BAR-B-QUE STEAK PIT	15.24		0.00
390232	SE	12	23	5	5	PARSONS DRILLING	1968-06-21	29.26	New Well	Domestic		3		LERNER, DENNIS	3.35	9.09	0.00
394246	SE	13	23	5	5	UNKNOWN DRILLER		4.57	Chemistry	Domestic	1			PERRY, R.T.			0.00
418094	NE	12	23	5	5	INTERPROVINCIAL DRILLING CONTRACTORS	1974-05-27	12.19	New Well	Domestic	<u>2</u>	5		RIDLEY, HAROLD	2.44	6.82	15.24
<u>458941</u>	NE	12	23	5	5	AARON DRILLING INC.	2001-10-10	36.58	Deepened	Domestic		7		HOLSCHUH, CHARLIE#3338	3.35	2.27	16.81
<u>465414</u>	NW	12	23	5	5	UNKNOWN DRILLER		0.00	Spring	Municipal				REID, CROWTHER & PARTNERS LTD			0.00
<u>491217</u>	NW	12	23	5	5	BAKER WATER WELLS	1998-07-14	24.38	New Well	Domestic		5	22	DEAN, DON	1.52	90.92	16.81
<u>494766</u>	NE	12	23	5	5	ALKEN BASIN DRILLING LTD.	1999-11-16	24.38	Test Hole- Decommissioned	Domestic		4		MILLS, ROBERT			0.00


Printed on 10/1/2024 6:29:21 PM Page: 8 / 9

View in Imperial Export to Excel

GIC Well ID	LSD	SEC	TWP	RGE	М	DRILLING COMPANY	DATE COMPLETED	DEPTH (m)	TYPE OF WORK	USE	СНМ	LT	PT	WELL OWNER	STATIC LEVEL (m)	TEST RATE (L/min)	SC_DIA (cm)
499358	NW	12	23	5	5	ALKEN BASIN DRILLING LTD.	2001-08-28	30.48	Test Hole- Decommissioned	Domestic		2		ODELL, RANDY			0.00
499359	NW	12	23	5	5	ALKEN BASIN DRILLING LTD.	2001-08-28	60.96	Test Hole- Decommissioned	Domestic		3		ODELL, RANDY			0.00
1020214	1	13	23	5	5	DEL'S REGIONAL DRILLING	1998-09-30	30.48	New Well	Domestic		5	2	RENAUD, ALAIN	2.41	11.37	16.81
1020215	SE	13	23	5	5	AARON DRILLING INC.	2005-07-26	30.48	Existing Well- Decommissioned	Domestic		1		DOMANIC OILFIELD SERV	2.44		
1021522	NW	12	23	5	5	AARON DRILLING INC.	2007-08-07	49.68	New Well	Domestic		20	13	MCKEAGUE, DOUG	0.00	18.18	16.81
1022408	15	12	23	5	5	AARON DRILLING INC.	2014-02-10		Existing Well- Decommissioned	Unknown				SHEPERD, BILL			16.81
1022750	9	13	23	5	5	AARON DRILLING INC.	2016-05-24	65.53	New Well	Domestic		19	7	WAKEFIELD, DAVE & IRIS	16.52	4.55	16.84
1022840	9	13	23	5	5	AARON DRILLING INC.	2016-11-13	149.96	Dry Hole- Decommissioned	Unknown		21		LENNOX, PAIGE			
1023283	16	12	23	5	5	AARON DRILLING INC.			Existing Well- Decommissioned	Unknown				KING MAKER DEVELOPMENTS			
1023312	15	12	23	5	5	AARON DRILLING INC.			Existing Well- Decommissioned	Unknown				KINGMAKER DEVELOPMENTS			
1023313	16	12	23	5	5	AARON DRILLING INC.			Existing Well- Decommissioned	Unknown				KINGMAKER DEVELOPMENTS			
1023314	SE	12	23	5	5	AARON DRILLING INC.			Existing Well- Decommissioned	Unknown				KING MAKER DEVELOPMENTS			
1023374	16	12	23	5	5	AARON DRILLING INC.			Existing Well- Decommissioned	Unknown				KING MAKER DEVELOPMENTS			
1115227	NW	12	23	5	5	BAKER WATER WELLS	2011-09-22	10.67	Dry Hole- Decommissioned	Domestic		4		RIVERSIDE CHATEAU			
<u>1611155</u>	16	12	23	5	5	PETER NIEMANS WATER WELL DRILLING	2022-09-05	28.96	New Well	Domestic		6	26	FRENCH, KIM	11.40	34.10	16.84
2066214	14	12	23	5	5	WELL DONE WATERWELLS INC.	2018-10-25	53.34	New Well	Domestic		6	26	MACALLISTER, EDITH	2.32	27.28	16.83
2095057	SE	12	23	5	5	UNKNOWNDRILLINGCOMP11	1961-07-01	21.34	Well Inventory	Domestic & Stock		1		MASCH, KLAUS	21.34		
2096008	NE	12	23	5	5	UNKNOWNDRILLINGCOMP11		3.66	Well Inventory	Domestic		1		MCAUTHUR, ARNOLD G.			
9546320	14	12	23	5	5	AQUACLEAR DRILLING INC.	2017-09-03	41.15	New Well	Domestic		7	18	MINTY, DEV	2.83	6.82	16.81

Printed on 10/1/2024 6:29:21 PM Page: 9 / 9

September 25, 2025 CA0048988.7843

APPENDIX B

Groundwater Chemistry

Appendix E	- Groundwater Chemistry 2001-200	04
------------	----------------------------------	----

		,																						
SampleID	Date Source	WellDepth Al	lkalinity	Bicarbonat (Calcium	Carbonate C	hloride	Conductivity Fluo	oride	Hardness	Hydroxide M	lagnesium Ni	itrate	Nitrite	pН	F	Potassium Ir	on	Sodium	Sulfate	TDS	Latitude	Longitude	STRM
T017733	28-Aug-02 Well	100	304.4	371.3	91.37	0	13.3	602	0.1	310.55	0	20.01	1.5		0	7.73	1.41	0.18	6.62	14.6	331.46	50.943148	-114.571721	S12T23R5M5
T017619	7-Oct-02 Well	45	350.9	428.1	113.1	0	102.1	1045	0.2	371.52	0	21.64	3.4		0	7.93	4.5	0.22	62.67	34.6	552.69	50.943148	-114.571721	S12T23R5M5
T017670	6-Mar-03 Well	30	311.2	379.7	119.9	0	19.9	843	0.4	418.32	0	28.88	0.1		0	8.08	1.67	0.05	21.73	113.5	492.76	50.943148	-114.571721	S12T23R5M5
T031474	8-Jan-04 Well	29	276.3	337.1	160.1	0	292.8	1544	0.2	550.57	0	36.62	0		0	8.16	12.38	0.0078	81.95	30.4	780.16	50.943148	-114.571721	S12T23R5M5
T000015	10-Feb-02 Well	10	240.1	292.9	3.1	0	23.4	679	0.3	10.83	0	0.75	0.07		0	8.14	0.15	0.11	163.5	79.5	414.82	50.957696	-114.571717	S13T23R5M5
T002890	16-Jul-02 Well	10	377.2	460.2	125.3	0	46	955	0.2	427.73	0	27.89	2		0	7.95	2.26	0	34.71	67.9	532.52	50.957696	-114.571717	S13T23R5M5
T017584	25-Nov-02 Well	74	304.1	371	80.98	0	47	766	0.08	287.99	0	20.83	0		0	8.11	1.07	0.98	46.19	27.8	406.36	50.957696	-114.571717	S13T23R5M5
T017624	4-Dec-02 Well	160	318.1	354.4	14.9	16.5	2.1	615	1.9	60.97	0	5.77	0.46		0	8.63	0.81	0.5	126.7	10.8	354.29	50.957696	-114.571717	S13T23R5M5
T023258	24-Jan-03 Well	75	354.5	406	18.02	13	11.5	709	1	85.12	0	9.74	0		0	8.52	0.77	0.03	132.2	24.1	409.98	50.957696	-114.571717	S13T23R5M5
T024061	8-May-03 Well	56	358.7	437.6	86.61	0	22.9	732	0.8	321.97	0	25.67	0.06		0	8.03	1.68	0.61	30.3	16.8	400.01	50.957696	-114.571717	S13T23R5M5
T031534	24-Feb-04 Well	6	267.1	325.9	120.47	0	108	1048	0.3	397.55	0	23.49	9.3		0	8.04	3.22	0.2	56.61	62.8	544.43	50.957696	-114.571717	S13T23R5M5

Annondiv	D	Groundwater	Quality	2004 2006

SampleID	Date	Source	WellDepth	Alkalinity	Bicarbonate	Calcium	Carbonate C	hloride	Conductivity Fluor	ride	Hardness	Hydroxide Ma	agnesium Ni	trate	Nitrite pH		Potassium Iron	5	Sodium	Sulfate	TDS	Latitude	Longitude	STRM
T041651	30-Apr-0	04 Well	10	306.	5 373.9	112.3	0	60.5	822	0.2	372.86	0	22.45	0.3	-0.03	8.2	1.64	-0.01	31.5	41.4	454.14	50.943148	-114.571721	1 S12T23R5M5
T050758	3-Nov-0	04 Well	6	233.	2 284.5	80.85	0	24.6	594	0.2	281.36	0	19.3	0.3	-0.03	8.01	1.21	0.31	15.71	46.4	328.46	50.943148	-114.571721	1 S12T23R5M5
T047230	3-Jun-0	05 Well	70	259.:	1 316.1	109.1	0	157.1	1072	0.2	382.95	0	26.84	4.1	-0.03	8.23	2.57	0.03	51.56	30.6	537.58	50.943148	-114.571721	1 S12T23R5M5
T052549	21-Sep-0	05 Well	17	379.	4 462.8	105.1	0	108.2	1102	0.1	348.91	0	21	3.7	-0.03	8.02	4.42	-0.01	95.18	22.9	588.21	50.943148	-114.571721	1 S12T23R5M5
T062871	24-Nov-0	05 Well	90	271.	327.7	42.65	1.8	28.6	595	0.3	161.1	0	13.26	-0.23	-0.03	8.3	0.86	0.05	69.42	8.6	326.63	50.943148	-114.571721	1 S12T23R5M5
T063518	16-Oct-0	06 Well	25	384.	5 469.1	32.69	0	87.1	1043	0.5	127.62	0	11.17	-0.23	-0.03	8.1	1.09	0.02	201.1	24.9	589.31	50.943148	-114.571721	1 S12T23R5M5
T075388	7-Nov-0	06 Well	15	268.	3 298	79.57	14.8	1	503	0.2	276.93	0	19	-0.23	-0.03	8.56	1.1	0.21	6.79	12.6	281.56	50.943148	-114.571721	1 S12T23R5M5
T031598	18-May-0	04 Well	65	359.4	4 438.5	114.1	0	58.4	901	0.7	430.97	0	35.47	-0.23	-0.03	8.06	1.43	0.11	25.92	46.4	498.09	50.957696	-114.571717	7 S13T23R5M5
T053923	23-Aug-0	05 Well	120	309.:	1 344.4	25.61	16.1	4.5	600	0.5	117.4	0	12.98	-0.23	-0.03	8.6	7.66	0.14	88.4	14.4	339.57	50.957696	-114.571717	7 S13T23R5M5
T063552	3-Apr-0	06 Well	-50	294.	359.7	418.6	0	1507.5	5280	-0.1	1523.76	0	116.2	-0.23	-0.03	8.06	5.64	3.75	471.8	114.3	2810.93	50.957696	-114.571717	7 S13T23R5M5
T064199	3-Apr-0	06 Well	74	298.	364.5	84.39	0	63	800	0.1	297.74	0	21.13	-0.23	0.1	8.12	1.32	0.05	51.12	22.5	422.96	50.957696	-114.571717	7 S13T23R5M5
T063790	11-Jun-0	06 Well	26	35	3 430.6	117.7	0	44	872	0.1	405.12	0	27.01	1.3	-0.03	8.11	2.55	0.04	29.18	48.3	482	50.957696	-114.571717	7 S13T23R5M5

App	endix B -	Groundwate	r Chemistry	, - 2007 -	2009		

SampleID	Date Source	WellDepth A	lkalinity	Bicarbonate C	alcium	Carbonate Ch	oride	Conductivity Flu	oride	Hardness F	Hydroxide Ma	agnesium N	itrate	Nitrite pl	4	Potassium Iro	n	Sodium	Sulfate	TDS	Latitude	Longitude	STRM
T075430	23-Jan-07 Well	7	268.4	327.5	79.48	0	1.1	531	0.2	273.7	0	18.27	-0.23	-0.03	7.66	1.23	-0.01	7.01	18.3	286.57	50.943148	-114.57172	21 S12T23R5M5
T082730	28-Jan-08 Well	12	268.1	327.1	184.4	0	29.9	1193	0.2	637.31	0	42.95	1.7	-0.03	8.08	3.38	-0.01	22.89	348.7	795.01	50.943148	-114.57172	21 S12T23R5M5
T086275	16-Apr-08 Well	10	254.8	310.8	80.05	0	8.7	546	0.2	280.97	0	19.69	-0.23	-0.03	8.04	0.67	-0.01	8.21	26.5	296.94	50.943148	-114.57172	21 S12T23R5M5
T053999	23-Apr-08 Well	50	323.7	394.9	105.5	0	10.4	640	0.1	355.96	0	22.47	0.5	-0.03	8.15	2.03	0.02	5.91	10	351.08	50.943148	-114.57172	21 S12T23R5M5
T086274	27-May-08 Well	10	187.8	229.1	57.66	0	5	403	0.2	202.95	0	14.32	-0.23	-0.03	8.06	0.55	-0.01	4.8	15.9	211.18	50.943148	-114.57172	21 S12T23R5M5
T098724	14-Nov-08 Well	43	320.7	391.3	105.2	0	64.7	847	0.4	350.93	0	21.43	2.4	-0.03	7.84	5.5	2.9	45.2	24.3	461.55	50.943148	-114.57172	21 S12T23R5M5
T098851	22-Jan-09 Well	16	328.7	401	153.7	0	521	2280	0.3	519.64	0	32.99	9.7	-0.03	8.14	5.14	-0.01	257.7	38.6	1216.33	50.943148	-114.57172	21 S12T23R5M5
T085844	13-May-09 Well	10	272.5	332.4	115.5	0	114	889	0.3	379.91	0	22.22	1	-0.03	8.25	1.68	-0.01	40.54	24.6	483.29	50.943148	-114.57172	21 S12T23R5M5
T079835	3-Jun-07 Well	-50	292.1	356.4	80.97	0	-1	611	0.9	296.03	0	22.79	-0.23	-0.03	7.9	1.43	0.02	13.47	36.6	331.79	50.957696	-114.5717	17 S13T23R5M5
T082518	6-Sep-07 Well	25	350.1	427.1	141.2	0	40	919	0.1	477.15	0	30.25	1.5	-0.03	8.14	2.67	0.03	39.88	76.4	542.04	50.957696	-114.5717	17 S13T23R5M5
T085843	8-Feb-08 Well	-50	379.3	462.7	122.8	0	56.2	918	0.1	409.09	0	24.88	-0.23	-0.03	8.26	3.59	0.03	30.35	25.4	491.01	50.957696	-114.5717	17 S13T23R5M5
T065070	16-Jun-08 Well	105	389.8	475.6	54.73	0	80	974	0.2	206.46	0	16.95	-0.23	-0.03	8.14	0.74	0.01	150	-1	537.1	50.957696	-114.5717	17 S13T23R5M5
T075414	11-Aug-09 Well	80	364.8	445.1	91.46	0	10.9	711	0.8	329.31	0	24.51	0.3	-0.03	8.14	1.53	0.13	25.91	22	396.29	50.957696	-114.5717	17 S13T23R5M5

App	endix B	- Groundwate	er Chemistr	y - 2010-2	012	2			

SampleID	Date Source	WellDepth Alk	alinity	Ricarhonate (`alcium	Carbonate Cl	nloride	Conductivity Fluor	ahir	Hardness	Hydroxide M	agnosium N	itrato	Nitrite	нα	Potassium	Iron	Sodium	Sulfate	TDS	Latitude	Longitude	STRM
Jumpicio	Date Source	WeilbeptilAir	cumincy	Dicar boriate c	aiciaiii	carbonate ci	lioriac	Conductivity	iuc	i iui ui ic33	TIYUTOXIUC IVI	ugiicsiuiii iv	itiate	WILLIEC	PII	i otassiaiii	11 011	Jourum	Junute	103	Lutituuc	•	
T107478	11-Jan-10 Well	-50	267.3	326.2	126.5	0	209.5	1290	0.2	421.09	0	25.55	8	-0.03	8.28	4.3	-0.01	79.55	48.5	662.49	50.943148	-114.57172	1 S12T23R5M5
T115396	10-May-10 Well	120	336	385.6	35.35	12	6.2	621	0.5	151.64	0	15.39	-0.23	-0.03	8.5	1.34	0.2	84.26	10.3	355.23	50.957696	-114.57171	7 S13T23R5M5
T110532	27-May-10 Well	82	284.8	347.4	77.38	0	7.5	634	0.7	305.97	0	27.38	-0.23	-0.03	8.03	9.52	0.58	9.87	55.1	358.33	50.957696	-114.57171	7 S13T23R5M5
T125625	15-Nov-10 Well	-50	236.8	288.9	67.3	0	13.9	506	-0.1	254.69	0	21.04	0.8	-0.03	7.88	1.9	0.01	6.12	8.5	261.65	50.943148	-114.57172	1 S12T23R5M5
T125568	14-Mar-11 Well	74	305	372.1	92.11	0	90.1	856	-0.1	327.72	0	23.73	-0.23	-0.03	8.26	1.3	0.04	54.98	19.9	465.49	50.957696	-114.57171	7 S13T23R5M5
T115440	13-Apr-11 Well	39	313.4	382.4	97.96	0	22.4	656	-0.1	332.11	0	21.25	0.7	-0.03	8.13	1.78	0.02	6.95	9.7	348.86	50.943148	-114.57172	1 S12T23R5M5
T115386	18-Apr-11 Well	85	282.4	344.5	79.19	0	1.1	621	0.7	310.98	0	27.5	-0.23	-0.03	8.23	1.57	2.47	14.16	61.4	355.06	50.957696	-114.57171	7 S13T23R5M5
T119002	20-Apr-11 Well	-50	357	416.6	-0.1	9.3	7.2	704	0.9	0.33	0	-0.1	-0.23	-0.03	8.53	0.4	0.02	170.8	12.4	405.99	50.957696	-114.57171	7 S13T23R5M5
T115382	21-May-11 Well	30	228.8	279.1	50.42	0	15.7	511	0.2	170.62	0	10.86	0.3	-0.03	7.95	6.72	-0.01	42.48	18	282.01	50.943148	-114.57172	1 S12T23R5M5
T109243	10-Jun-11 Well	-50	267.5	326.3	90.9	0	71	793	0.2	326.8	0	24.24	-0.23	-0.03	8.22	1.23	0.15	41.05	31.8	421.01	50.943148	-114.57172	1 S12T23R5M5
T126753	12-Jun-12 Well	20	161.5	194.4	58.63	1.3	1.3	383	0.3	208.52	0	15.08	-0.23	-0.03	8.33	0.56	-0.01	2.13	40.3	215.27	50.943148	-114.57172	1 S12T23R5M5

Appendix B - Groundwater Chemistry - 2013-2015	Appendix B -	- Groundwater	Chemistry	· - 2013-2015
--	--------------	---------------	-----------	---------------

Appendix E	3 - Groundwater Chemis	try - 2013-2015	5																						
SampleID	Date Source	WellDepth A	Alkalinity	Bicarbonate	Calcium	Carbonate Cl	hloride	Conductivit Fluorid	e H	ardness	Hydroxide N	√agnesium N	itrate	Nitrite	pН	P	otassium Iror	1	Sodium	Sulfate	TDS	Latitude	Longitude	STRM	Well ID
T156851	8-Jan-13 Well	165	383.6	468	52.6	0	62	898	0.2	183.96	0	12.77	-0.23	-0.03	3	7.89	1.02	0.14	146.49	20.3	525.48	50.943148	-114.57172	1 S12T23R5M5	U
T134146	21-Jan-13 Well	160	411.2	499.2	50.06	1.2	59.7	897	0.2	171.79	0	11.36	-0.23	-0.03	3	8.3	1.13	0.9	147.44	19.7	536.29	50.943148	-114.57172	1 S12T23R5M5	U
T156840	28-Feb-13 Well	10	285.8	348.7	117.53	0	78	920	0.2	401.08	0	26.13	3.8	-0.03	3	8.25	2.86	0.01	48.51	104.1	552.62	50.957696	-114.57171	7 S13T23R5M5	U
T150802	4-Mar-13 Well	26	343.8	419.5	112.66	0	30.4	777	0.2	381.23	0	24.26	1	-0.03	3	8.16	2.29	-0.01	29.6	68.1	474.78	50.957696	-114.57171	7 S13T23R5M5	U
T150868	29-Apr-13 Well	-50	309.1	377.1	118.95	0	53.1	903	0.2	413.5	0	28.29	2.5	-0.03	3	8.26	3.17	-0.01	37.64	95.6	524.86	50.957696	-114.57171	7 S13T23R5M5	U
T152756	15-Jul-13 Well	-50	297.9	363.4	110.23	0	61.4	774 -	0.1	361.9	0	21.04	-0.23	-0.03	3	8.09	2.29	-0.01	50.34	17.7	441.75	50.957696	-114.57171	7 S13T23R5M5	U
T162288	28-Jan-14 Well	160	349.4	412.3	59.28	6.9	51.2	824	0.2	206.12	0	14.11	-0.23	-0.03	3	8.41	1.1	0.05	145.54	21.5	502.52	50.943148	-114.57172	1 S12T23R5M5	U
T162318	19-Feb-14 Well	15	301.5	348.5	107.77	9.5	59.3	792	0.2	357.19	0	21.39	3.5	-0.03	3	8.47	5.92	-0.01	37.44	23.5	439.87	50.943148	-114.57172	1 S12T23R5M5	U
T162580	2-Apr-14 Well	130	370.2	435.3	40.48	8	2.4	661	0.7	161.97	0	14.78	-0.23	-0.03	3	8.43	1.36	0.06	108.91	3.5	394.28	50.943148	-114.57172	1 S12T23R5M5	U
T163568	16-Jun-14 Well	-50	324.3	395.6	31.29	0	9.7	631	0.2	110.66	0	7.9	0.6	-0.03	3	8.23	1.18	-0.01	117.66	10.2	373.19	50.943148	-114.57172	1 S12T23R5M5	U
T163547	18-Aug-14 Well	115	356.5	429.9	58.69	2.5	30	726	0.2	223.2	0	18.62	-0.23	-0.03	3	8.32	0.58	0.31	78.98	13.5	414.46	50.957696	-114.57171	7 S13T23R5M5	U
T150828	30-Sep-14 Well	50	429.4	523.8	190.2	0	104.9	1249	0.2	596.75	0	29.58	2.1	-0.03	3	7.7	4.26	-0.01	55.29	85.2	729.34	50.957696	-114.57171	7 S13T23R5M5	U
T161541	12-May-15 Well	10	328.4	400.7	139.37	0	86	897	0.2	456.23	0	26.28	0.6	-0.03	3	8.05	2.02	-0.01	24.15	44.9	520.65	50.943148	-114.57172	1 S12T23R5M5	U
T139027	22-Jun-15 Well	100	377.9	461	139.94	0	129	1158	0.7	511.16	0	39.27	0.3	-0.03	3	7.87	0.63	0.02	27.88	31.2	595.63	50.957696	-114.57171	7 S13T23R5M5	U
T139045	10-Aug-15 Well	74	294.8	359.7	110.97	0	93.9	873	0.1	373.11	0	23.32	-0.23	-0.03	3	7.8	5.2	-0.01	54.39	22.7	487.68	50.957696	-114.57171	7 S13T23R5M5	U

Appendix B	 Groundwate 	er Chemistry	2016-2018																							
SampleID	Date	Source	WellDepth	Alkali	inity E	Bicarbonate Cal	cium	Carbonate Cl	loride	Conductivity Fluc	oride	Hardness	Hydroxide M	agnesium N	itrate	Nitrite pl	Н	Potassium Iro	n	Sodium	Sulfate 1	ΓDS	Latitude	Longitude	STRM	Well ID
T176835	16-Dec-1	5 Well		-50	361	440	83.8	0	2.6	706	0.4	337	0	31.1	-0.23	-0.03	8.3	1 1.3	0.24	39.6	30	40	5 50.943148	-114.57172	1 S12T23R5M5	U
T180597	25-Jan-16	6 Well		75	311	380	112	0	46.7	773	0.2	379	0	24.5	2.4	-0.03	8.3	1 1.7	-0.01	32.4	23.6	430	50.943148	-114.57172	1 S12T23R5M5	U
T139097	21-Mar-16	6 Well		115	333	406	59.8	0	26.1	733	0.1	225	0	18.4	-0.23	-0.03	8.1	1 0.59	0.16	78.2	11.6	39	50.957696	-114.57171	7 S13T23R5M5	350901
T190402	25-Apr-16	6 Well		8	325	396	116	0	55.4	900	0.2	392	0	25.1	2.2	-0.03	8	8 3.1	-0.01	31.8	59.1	48	7 50.957696	-114.57171	7 S13T23R5M5	U
T220769	11-Jul-16	6 Well		-50	220	269	90.6	0	3.4	556	0.3	305	0	19.1	0.3	-0.03	8	8 0.62	-0.01	2.8	73.8	32	3 50.943148	-114.57172	1 S12T23R5M5	U
T201833	6-Sep-16	6 Well		10	424	518	148	0	57.9	1030	0.2	501	0	32.1	1.2	-0.03	7.8	8 3.1	0.03	39.8	55.9	59	2 50.957696	-114.57171	7 S13T23R5M5	U
T207335	10-Apr-1	7 Well		14	231	282	89	0	128	882	0.1	322	0	24.1	-0.23	-0.03	8.2	2 1.3	0.02	51.6	18.7	45	2 50.957696	-114.57171	7 S13T23R5M5	U
T221306	30-May-1	7 Well		90	298	357	96.9	3.3	23.5	659	0.12	327	0	20.6	1.1	-0.03	8.3	3 1.8	0.06	8.8	15.6	34	7 50.943148	-114.57172	1 S12T23R5M5	U
T194280	26-Jun-1	7 Well		100	378	461	154	0	139	1175	0.6	589	0	49.4	-0.23	-0.03	8.2	2 0.53	0.04	31.7	30.2	633	3 50.957696	-114.57171	7 S13T23R5M5	U
T201765	24-Jul-1	7 Well		10	298	364	101	0	26	724	0.31	356	0	25.3	0.53	0.04	8.2	2 1.5	0.05	27.5	62.2	42	3 50.943148	-114.57172	1 S12T23R5M5	U
T150799	24-Oct-17	7 Well		120	276	315	59.6	10.5	23.5	607	0.33	227	0	19	-0.23	-0.03	8.6	5 1.3	0.04	68.8	17.1	35	50.957696	-114.57171	7 S13T23R5M5	1020257
T198753	13-Aug-1	8 Well		74	285	348	120	0	145	1017	-0.1	404	0	25.6	-0.23	-0.03	8.3	3 1.4	-0.01	54.6	19.9	538	3 50.957696	-114.57171	7 S13T23R5M5	U
T193134	28-Sep-18	8 Well		12	323	391	123	1.5	79	966	0.26	408	0	24.5	1	-0.03	8.3	3 2	0.01	45.1	69	53	7 50.943148	-114.57172	1 S12T23R5M5	U
T223650	5-Nov-18	8 Well		175	345	398	20.7	11.5	27.1	726	0.58	67.8	0	3.9	-0.23	-0.03	8.6	6 0.58	1.3	151	1.7	41	2 50.943148	-114.57172	1 S12T23R5M5	2066214

September 25, 2025 CA0048988.7843

APPENDIX C

Analytical Calculations

Project: Bragg Creek **Location:** Section 10+150

River Elev. = 1307.5

Parameter	s	Distance		
K(m/s)=	8.00E-04	x ₁ (m)=	10	
b(m)=	4	x ₂ (m)=	20	
S _y =	0.2	x ₃ (m)=	30	
S₀(m)=	3.8	x ₄ (m)=	50	*
t(day)=	3	x ₅ (m)=	75	

 $q_o = 0.00010653 \text{ m}^3/\text{s} \qquad 9.20439 \text{ m}^3/\text{d}$

 Unsteady one-dimensional flow Huisman, L. and T.N. Olsthoorn (1983) *Artificial Groundwater Recharge*. Pittman: London. 320pp.

 $u = 0.5*(sqrt(S_v/Kb))*(x/sqrt(t))$

 $q_o = (s_o/sqrt(\pi)) * (sqrt(S_y*K*b))*(1/sqrt(t))$

 $E_1 = erfc(u)$ $E_2 = e^{-u^2}$ $s = S_0 * E_1$ $q = q_0 * E_2$

	See	page	rate	per	metre
--	-----	------	------	-----	-------

Head Change (s _n at distance x _n)	Elev.			m ³ /s	m³/d	L/min
s ₁ = 3.467754	1310.968	E ₂ = 0.99399	$q_1 =$	0.000105892	9.149069741	6.353521
s ₂ = 3.139486	1310.639	E ₂ = 0.976176	$q_2=$	0.000103994	8.985100592	6.239653
s ₃ = 2.819032	1310.319	E ₂ = 0.947192	q_3 =	0.000100907	8.718322956	6.054391
s ₄ = 2.215404	1309.715	E ₂ = 0.860102	$q_4=$	9.16286E-05	7.916714474	5.497718
s ₅ = 1.558829	1309.059	E ₂ = 0.712422	q ₅ =	7.5896E-05	6.557413021	4.553759

Parameters Distance

K(m/s)=	8.00E-04	x ₁ (m)=	100
b(m)=	4	x ₂ (m)=	150
S _y =	0.2	x ₃ (m)=	200
$S_o(m)=$	3.8	x ₄ (m)=	300
t(day)=	3	x ₅ (m)=	400

 $q_o = 0.00010653$ 9.20439 m³/d

u ₁ =	0.776412492	E ₁ =	0.272199
u ₂ =	1.164618738	E ₁ =	0.099554
u ₃ =	1.552824984	E ₁ =	0.02809
u ₄ =	2.329237477	E ₁ =	0.000988
u ₅ =	3.105649969	E₁=	1.12E-05

Seepage rate per metre

Head Change (s _n at distance x _n)					m³/s	m³/d	L/min
s ₁ = 1.034355	1308.534	E ₂ =	0.547268	$q_1 =$	5.83017E-05	5.037268707	3.498103
s ₂ = 0.378305	1307.878	E ₂ =	0.257603	$q_2 =$	2.7443E-05	2.371075298	1.64658
s ₃ = 0.106742	1307.607	E ₂ =	0.089702	q ₃ =	9.55613E-06	0.825649391	0.573368
s ₄ = 0.003753	1307.504	E ₂ =	0.004404	q ₄ =	4.69119E-07	0.040531864	0.028147
s ₅ = 4.27E-05	1307.5	E ₂ =	6.47E-05	q ₅ =	6.89738E-09	0.000595934	0.000414

Project: Bragg Creek **Location:** Section 10+700

River Elev. =

1303

Parameter	s	Distance		
K(m/s)=	8.00E-04	$x_1(m) =$	10	
b(m)=	4	$x_2(m) =$	20	
S _y =	0.2	$x_3(m) =$	30	
S₀(m)=	4.3	x ₄ (m)=	50	*
t(day)=	3	$x_5(m) =$	75	

 $q_o = 0.00012055 \text{ m}^3/\text{s}$

10.4155 m³/d

u ₁ =	0.077641249	E ₁ =	0.912567
u ₂ =	0.155282498	E ₁ =	0.826181
$u_3 =$	0.232923748	E ₁ =	0.74185
$u_4=$	0.388206246	E ₁ =	0.583001
u _e =	0.582309369	E₁=	0 410218

Unsteady one-dimensional flow Huisman, L. and T.N. Olsthoorn (1983) *Artificial Groundwater Recharge*. Pittman: London. 320pp.

 $u = 0.5*(sqrt(S_y/Kb))*(x/sqrt(t))$

 $q_o = (s_o/sqrt(\pi)) * (sqrt(S_y*K*b))*(1/sqrt(t))$

 $E_1 = erfc(u)$ $E_2 = e^{-u^2}$ $s = S_0 * E_1$ $q = q_0 * E_2$

					ocopago .ato	Po:ou.o	
Head Change (s _n at distance x _n)	Elev.				m ³ /s	m ³ /d	L/min
s ₁ = 3.924038	1306.924	E ₂ =	0.99399	$q_1 =$	0.000119825	10.35289471	7.18951
s ₂ = 3.552577	1306.553	E ₂ =	0.976176	$q_2 =$	0.000117678	10.16735067	7.06066
s ₃ = 3.189957	1306.19	E ₂ =	0.947192	$q_3 =$	0.000114184	9.865470713	6.851021
s ₄ = 2.506904	1305.507	E ₂ =	0.860102	$q_4=$	0.000103685	8.958387431	6.221102
s ₅ = 1.763938	1304.764	E ₂ =	0.712422	q ₅ =	8.58823E-05	7.420230524	5.152938

Parameter	s	Distance		
K(m/s)=	8.00E-04	x ₁ (m)=	100	
b(m)=	4	x ₂ (m)=	150	
S _y =[0.2	x ₃ (m)=	200	
S _o (m)=	4.3	x ₄ (m)=	300	
t(day)=	3	x ₅ (m)=	400	

 $q_o = 0.00012055$

10.4155 m³/d

u ₁ =	0.776412492	E ₁ =	0.272199
$u_2 =$	1.164618738	E ₁ =	0.099554
$u_3 =$	1.552824984	E ₁ =	0.02809
$u_4 =$	2.329237477	E ₁ =	0.000988
U==	3 105649969	F₁=	1 12F-05

Seepage rate per metre

Seepage rate per metre

Head Change (s _n at distance x _n)					m ³ /s	m ³ /d	L/min
s ₁ = 1.170455	1304.17	E ₂ =	0.547268	q ₁ =	6.5973E-05	5.700067222	3.95838
s ₂ = 0.428082	1303.428	E ₂ =	0.257603	q ₂ =	3.10539E-05	2.68305889	1.863235
s ₃ = 0.120787	1303.121	E ₂ =	0.089702	q ₃ =	1.08135E-05	0.934287468	0.648811
s ₄ = 0.004247	1303.004	E ₂ =	0.004404	q ₄ =	5.30845E-07	0.045865004	0.031851
s ₅ = 4.83E-05	1303	E ₂ =	6.47E-05	q ₅ =	7.80493E-09	0.000674346	0.000468

Project: Bragg Creek Location: Section 11+000

River Elev. = 1301.5

Parameter	s	Distance	
K(m/s)=	8.00E-04	x ₁ (m)=	10
b(m)=	4	$x_2(m) =$	20
S _y =	0.2	$x_3(m) =$	30
S₀(m)=	4.1	x ₄ (m)=	50 *
t(day)=	3	$x_5(m) =$	75

 $q_o = 0.00011494 \text{ m}^3/\text{s} = 9.93105 \text{ m}^3/\text{d}$

 Unsteady one-dimensional flow Huisman, L. and T.N. Olsthoorn (1983) *Artificial Groundwater Recharge*. Pittman: London. 320pp.

Seepage rate per metre

q₅= 8.18878E-05 7.075103523 4.913266

 $u = 0.5*(sqrt(S_v/Kb))*(x/sqrt(t))$

 $q_o = (s_o/sqrt(\pi)) * (sqrt(S_y*K*b))*(1/sqrt(t))$

 $E_1 = e^{-u^2}$ $s = S_0 * E_1$ $E_2 = e^{-u^2}$ $q = q_0 * E_2$

s₅= 1.681894

Head Change (s _n at distance x _n)	Elev.		m ³	³ /s	m ³ /d	L/min
s ₁ = 3.741525	1305.242	E ₂ = 0.99399	$q_1 = 0$	0.000114252	9.871364721	6.855114
s ₂ = 3.387341	1304.887	E ₂ = 0.976176	$q_2 = 0$	0.000112204	9.694450639	6.732257
s ₃ = 3.041587	1304.542	E ₂ = 0.947192	$q_3 = 0$	0.000108873	9.40661161	6.532369
s ₄ = 2.390304	1303.89	E ₂ = 0.860102	$q_4 = 9$	9.88625E-05	8.541718248	5.931749

 E_2 = 0.712422

1303.182

Parameters Distance K(m/s)=8.00E-04 $x_1(m) =$ 100 b(m)= $x_2(m) =$ 150 0.2 200 S_v= $x_3(m) =$ 300 $S_o(m)=$ 4.1 $x_4(m)=$ 400 t(day)= $x_5(m) =$

 $q_o = 0.00011494$

 u_1 = 0.776412492 E_1 = 0.272199 u_2 = 1.164618738 E_1 = 0.099554 u_3 = 1.552824984 E_1 = 0.02809 u_4 = 2.329237477 E_1 = 0.000988 u_5 = 3.105649969 E_1 = 1.12E-05

9.93105 m³/d

Seepage rate per metre m^3/s m³/d Head Change (s, at distance x,) L/min $s_1 = 1.116015$ 1302.616 $E_2 = 0.547268$ q₁= 6.29045E-05 5.434947816 3.774269 1301.908 E_2 = 0.257603 q₂= 2.96096E-05 2.558265453 1.776573 $s_2 = 0.408171$ $s_3 = 0.115169$ 1301.615 E₂= 0.089702 $s_4 = 0.004049$ 1301.504 $E_2 = 0.004404$ q₄= 5.06154E-07 0.043731748 0.030369 1301.5 $E_2 = 6.47E-05$ q₅= 7.44191E-09 0.000642981 0.000447 4.6E-05

Project: Bragg Creek **Location:** Section 11+550

River Elev. =

1297.5

Parameter	s	Distance		
K(m/s)=	8.00E-04	$x_1(m) =$	10	
b(m)=	4	$x_2(m) =$	20	
S _y =	0.2	$x_3(m) =$	30	
S₀(m)=	3.7	x ₄ (m)=	50	*
t(day)=	3	$x_5(m) =$	75	

 $q_o = 0.00010373 \text{ m}^3/\text{s}$ 8.96217 m³/d

u ₁ =	0.077641249	E ₁ =	0.912567
u ₂ =	0.155282498	E ₁ =	0.826181
u ₃ =	0.232923748	E ₁ =	0.74185
u ₄ =	0.388206246	E ₁ =	0.583001
u _c =	0.582309369	E₁=	0.410218

Unsteady one-dimensional flow Huisman, L. and T.N. Olsthoorn (1983) Artificial Groundwater Recharge. Pittman: London. 320pp.

 $u = 0.5*(sqrt(S_v/Kb))*(x/sqrt(t))$

 $q_o = (s_o/sqrt(\pi)) * (sqrt(S_y*K*b))*(1/sqrt(t))$

 $E_2 = e^{-u^2}$ $E_1 = erfc(u)$ $s = S_o * E_1$ $q = q_o * E_2$

			Seepage rate per metre			
Head Change (s _n at distance x _n)	Elev.		m ³ /s	m³/d L/min		
s ₁ = 3.376498	1300.876	$E_2 = 0.99399$	q ₁ = 0.00010310	5 8.908304748 6.186323		
s ₂ = 3.056868	1300.557	E ₂ = 0.976176	q ₂ = 0.00010125	8 8.748650577 6.075452		
s ₃ = 2.744846	1300.245	E ₂ = 0.947192	q ₃ = 9.82511E-0	5 8.488893405 5.895065		
s ₄ = 2.157104	1299.657	E ₂ = 0.860102	q ₄ = 8.92174E-0	5 7.708379882 5.353042		
s ₅ = 1.517807	1299.018	E ₂ = 0.712422	q ₅ = 7.38987E-0	5 6.384849521 4.433923		

Parameter	s	Distance				
K(m/s)=	8.00E-04	x ₁ (m)=	100			
b(m)=	4	$x_2(m) =$	150			
S _y =	0.2	x ₃ (m)=	200			
$S_o(m)=$	3.7	x ₄ (m)=	300			
t(day)=	3	$x_{\varepsilon}(m)=$	400			

q _o =	0.00010373		8.96217 m ³ /d
u ₁ =	0.776412492	E ₁ =	0.272199
u ₂ =	1.164618738	E ₁ =	0.099554
u ₃ =	1.552824984	E ₁ =	0.02809
$u_4 =$	2.329237477	E ₁ =	0.000988
u ₅ =	3.105649969	E ₁ =	1.12E-05

		Seepage rate per metre					
Head Change (s _n at distance x _n)					m ³ /s	m ³ /d	L/min
s ₁ = 1.007135	1298.507	E ₂ = 0	.547268	$q_1 =$	5.67675E-05	4.904709005	3.406048
s ₂ = 0.36835	1297.868	$E_2 = 0$.257603	$q_2 =$	2.67208E-05	2.30867858	1.603249
s ₃ = 0.103933	1297.604	E ₂ = 0	.089702	$q_3 =$	9.30465E-06	0.803921775	0.558279
s ₄ = 0.003654	1297.504	E ₂ = 0	.004404	$q_4 =$	4.56774E-07	0.039465236	0.027406
s ₅ = 4.15E-05	1297.5	E ₂ = 6	6.47E-05	q ₅ =	6.71587E-09	0.000580251	0.000403

Project: Bragg Creek **Location:** Section 12+100

River Elev. =

1293

Parameter	s	Distance				
K(m/s)=	8.00E-04	x ₁ (m)=	10			
b(m)=	4	x ₂ (m)=	20			
S _y =	0.2	x ₃ (m)=	30			
S₀(m)=	4	x ₄ (m)=	50	*		
t(day)=	3	x ₅ (m)=	75			
		3,				

 $q_o = 0.00011214 \text{ m}^3/\text{s} \qquad 9.68883 \text{ m}^3/\text{d}$

u ₁ =	0.077641249	E ₁ =	0.912567
$u_2 =$	0.155282498	E ₁ =	0.826181
$u_3 =$	0.232923748	E ₁ =	0.74185
u ₄ =	0.388206246	E ₁ =	0.583001
u ₅ =	0.582309369	E₁=	0.410218

Unsteady one-dimensional flow Huisman, L. and T.N. Olsthoorn (1983) *Artificial Groundwater Recharge*. Pittman: London. 320pp.

Seepage rate per metre

 $u = 0.5*(sqrt(S_v/Kb))*(x/sqrt(t))$

 $q_o = (s_o/sqrt(\pi)) * (sqrt(S_y*K*b))*(1/sqrt(t))$

 $E_1 = erfc(u)$ $E_2 = e^{-u^2/2}$ $s = S_0 * E_1$ $q = q_0 * E_2$

						•	
Head Change (s _n at distance x _n)	Elev.				m ³ /s	m³/d	L/min
s ₁ = 3.650268	1296.65	E ₂ =	0.99399	q ₁ =	0.00011146	65 9.630599728	3 6.687916
s ₂ = 3.304723	1296.305	E ₂ =	0.976176	q ₂ =	0.00010946	68 9.458000624	6.568056
s ₃ = 2.967402	1295.967	E ₂ =	0.947192	q ₃ =	0.00010621	17 9.177182059	6.373043
s ₄ = 2.332004	1295.332	E ₂ =	0.860102	q ₄ =	9.64512E-0	05 8.333383657	5.787072
s _c = 1.640873	1294 641	F _o =	0 712422	Gr=	7 98905F-0	15 6 902540023	₹ 4 703431

Parameter	s	Distance		_
K(m/s)=	8.00E-04	$x_1(m) =$	100	
b(m)=	4	$x_2(m) =$	150	
S _y =	0.2	$x_3(m) =$	200	
S₀(m)=	4	$x_4(m) =$	300	*
t(day)=	3	x ₅ (m)=	400	
q _o =	0.00011214		9.68883	m ³ /d

u ₁ =	0.776412492	E ₁ =	0.272199
u ₂ =	1.164618738	E ₁ =	0.099554
u ₃ =	1.552824984	E ₁ =	0.02809
u ₄ =	2.329237477	E ₁ =	0.000988
u ₅ =	3.105649969	E ₁ =	1.12E-05

		Seepage rate per metre				
Head Change (s _n at distance x _n)				m³/s	m³/d	L/min
s ₁ = 1.088795	1294.089	E ₂ = 0.547	268 q ₁ =	= 6.13702E-05	5.302388113	3.682214
s ₂ = 0.398216	1293.398	E ₂ = 0.257	603 q ₂ =	= 2.88874E-05	2.495868735	1.733242
s ₃ = 0.11236	1293.112	$E_2 = 0.089$	702 q ₃ =	= 1.00591E-05	0.869104622	0.603545
s ₄ = 0.00395	1293.004	E ₂ = 0.004	404 q ₄ =	= 4.93809E-07	0.04266512	0.029629
s ₅ = 4.49E-05	1293	E ₂ = 6.47E	E-05 q₅=	7.2604E-09	0.000627298	0.000436

Project: Bragg Creek **Location:** Section 12+450

River Elev. = 1290.5

Parameters	s	Distance						
K(m/s)=	8.00E-04	$x_1(m) =$	10					
b(m)=	4	$x_2(m) =$	20					
S _y =	0.2	$x_3(m) =$	30					
S₀(m)=	4.4	x ₄ (m)=	50	*				
t(day)=	3	$x_5(m) =$	75					

 $q_o = 0.00012335 \text{ m}^3/\text{s} \frac{10.6577 \text{ m}^3/\text{d}}{}$

 Unsteady one-dimensional flow Huisman, L. and T.N. Olsthoorn (1983) *Artificial Groundwater Recharge* . Pittman: London. 320pp.

Seepage rate per metre

 $u = 0.5*(sqrt(S_v/Kb))*(x/sqrt(t))$

 $q_o = (s_o/sqrt(\pi)) * (sqrt(S_y*K*b))*(1/sqrt(t))$

 $E_1 = e^{-u^2}$ $s = S_0 * E_1$ $E_2 = e^{-u^2}$ $q = q_0 * E_2$

					ocopago .ato	poou.	
Head Change (s _n at distance x _n)	Elev.				m ³ /s	m³/d	L/min
s ₁ = 4.015295	1294.515	E ₂ =	0.99399	$q_1 =$	0.000122612	10.5936597	7.356708
s ₂ = 3.635195	1294.135	E ₂ =	0.976176	$q_2 =$	0.000120414	10.40380069	7.224862
s ₃ = 3.264142	1293.764	E ₂ =	0.947192	q ₃ =	0.000116839	10.09490026	7.010347
s ₄ = 2.565204	1293.065	E ₂ =	0.860102	q ₄ =	0.000106096	9.166722022	6.365779
s ₅ = 1.80496	1292.305	E ₂ =	0.712422	q ₅ =	8.78796E-05	7.592794025	5.272774

Parameters Distance K(m/s)=8.00E-04 $x_1(m) =$ 100 b(m)= $x_2(m) =$ 150 0.2 200 S_v= $x_3(m) =$ 300 $S_o(m)=$ 4.4 $x_4(m)=$ 400 t(day)= $x_5(m) =$

 $q_o = 0.00012335$

u₄= 2.329237477

u₅= 3.105649969

 u₁=
 0.776412492
 E₁=
 0.272199

 u₂=
 1.164618738
 E₁=
 0.099554

 u₃=
 1.552824984
 E₁=
 0.02809

10.6577 m³/d

 E_1 = 0.000988

E₁= 1.12E-05

Seepage rate per metre m^3/s m³/d Head Change (s, at distance x,) L/min $s_1 = 1.197675$ 1291.698 $E_2 = 0.547268$ q_1 = 6.75073E-05 5.832626924 4.050435 $s_2 = 0.438038$ 1290.938 E_2 = 0.257603 q₂= 3.17761E-05 2.745455608 1.906566 $s_3 = 0.123596$ 1290.624 E₂= 0.089702 1.1065E-05 0.956015084 0.663899 1290.504 $E_2 = 0.004404$ 5.4319E-07 0.046931632 0.032591 $s_4 = 0.004345$ $s_5 = 4.94E-05$ 1290.5 $E_2 = 6.47E-05$ q₅= 7.98644E-09 0.000690028 0.000479 Project: Bragg Creek

Location: Section 12+800 (NW and SE sides)

River Elev. =

Parameter	s	Distance					
K(m/s)=	8.00E-04	x ₁ (m)=	10				
b(m)=	4	x ₂ (m)=	20				
S _y =	0.2	x ₃ (m)=	30				
S _o (m)=	4.2	x ₄ (m)=	50	*			
t(day)=	3	x ₅ (m)=	75				

 $q_o = 0.00011775 \text{ m}^3/\text{s}$ 10.1733 m^3/d

1287.1

u ₁ =	0.077641249	E ₁ =	0.912567
$u_2 =$	0.155282498	E ₁ =	0.826181
$u_3 =$	0.232923748	E ₁ =	0.74185
u ₄ =	0.388206246	E ₁ =	0.583001
u ₅ =	0.582309369	E₁=	0.410218

Unsteady one-dimensional flow Huisman, L. and T.N. Olsthoorn (1983) *Artificial Groundwater Recharge*. Pittman: London. 320pp.

 $u = 0.5*(sqrt(S_v/Kb))*(x/sqrt(t))$

 $q_o = (s_o/sqrt(\pi)) * (sqrt(S_v*K*b))*(1/sqrt(t))$

 $E_1 = erfc(u)$ $E_2 = e^{-u^2}$ $s = S_0^* E_1$ $q = q_0^* E_2$

 $s_5 = 1.722916$

Head Change (s _n at distance x _n)	Elev.				m ³ /s	m³/d	L/min
s ₁ = 3.832781	1290.933	E ₂ =	0.99399	$q_1 =$	0.000117039	10.11212971	7.022312
s ₂ = 3.469959	1290.57	E ₂ =	0.976176	$q_2 =$	0.000114941	9.930900655	6.896459
s ₃ = 3.115772	1290.216	E ₂ =	0.947192	$q_3 =$	0.000111528	9.636041162	6.691695
s ₄ = 2.448604	1289.549	E ₂ =	0.860102	$q_4=$	0.000101274	8.750052839	6.076426

 E_2 = 0.712422

1288.823

Parameters Distance K(m/s)= 8.00E-04 $x_1(m) =$ 100 150 b(m)= $x_2(m) =$ S_y= 0.2 200 $x_3(m) =$ 4.2 300 $S_o(m)=$ $x_4(m) =$ 400 t(day)= $x_5(m) =$

 $q_o = 0.00011775$

 u_1 = 0.776412492 E_1 = 0.272199 u_2 = 1.164618738 E_1 = 0.099554

10.1733 m³/d

Seepage rate per metre

Seepage rate per metre

8.3885E-05 7.247667024 5.033102

Head Change (s _n at distance x _n)					m ³ /s	m ³ /d	L/min
s ₁ = 1.143235	1288.243	E ₂ =	0.547268	$q_1 =$	6.44387E-05	5.567507519	3.866325
s ₂ = 0.418127	1287.518	E ₂ =	0.257603	$q_2 =$	3.03317E-05	2.620662172	1.819904
s ₃ = 0.117978	1287.218	E ₂ =	0.089702	q ₃ =	1.0562E-05	0.912559853	0.633722
s ₄ = 0.004148	1287.104	E ₂ =	0.004404	$q_4 =$	5.185E-07	0.044798376	0.03111
s ₅ = 4.72E-05	1287.1	E ₂ =	6.47E-05	q ₅ =	7.62342E-09	0.000658663	0.000457

